Noble gas supported boron-pentagonal clusters B5Ngn3+: exploring the structures and bonding

  • Zhao Tan
  • An Yong Li
Original Paper


A novel type of trivalent BNg five-membered cational species B5Ngn3+(Ng = He~Rn, n = 1~5) has been found and investigated theoretically using the B3LYP and MP2 methods with the def2-QZVPPD and def2-TZVPPD basis sets. The geometry, harmonic vibrational frequencies, bond energies, charge distribution, bond nature, aromaticity, and energy decomposition analysis of these structures were reported. The calculated B−Ng bond energy is quite large (the averaged bond energy is in the range of 209.2~585.76 kJ mol-1) for heavy rare gases and increases with the Ng atomic number. The analyses of the molecular wavefunction show that in the BNg compounds of heavy Ng atoms Ar~Rn, the B−Ng bonds are of typical covalent character. Nuclear independent chemical shifts display that both B53+ and B5Ngn3+(n=1~5) have obvious aromaticity. Energy decomposition analysis shows that these BNg compounds are mainly stabilized by the σ-donation from the Ng valence p orbital to the B53+ LUMO. These findings offer valuable clues toward the design and synthesis of new stable Ng-containing compounds.


Five-membered boron ring Noble gas B−Ng bond Aromaticity 


Compliance with ethical standards

Conflict of interest

The authors declare that this paper has no competing financial interests.

Supplementary material

894_2018_3605_MOESM1_ESM.doc (3.2 mb)
ESM 1 (DOC 3321 kb)


  1. 1.
    Ghosh A, Manna D, Ghanty TK (2016) Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng=Kr and Xe; Y=As, Sb and Bi). Phys Chem Chem Phys 18(17):12289–12298CrossRefGoogle Scholar
  2. 2.
    Filipek GT, Fortenberry RC (2016) Formation of potential interstellar noble gas molecules in gas and adsorbed phases. ACS Omega 1(5):765–772Google Scholar
  3. 3.
    Tecmer P, Boguslawski K, Legeza Ö et al. (2014) Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. Phys Chem Chem Phys 16(2):719–727CrossRefGoogle Scholar
  4. 4.
    Magdysyuk OV, Adams F, Liermann HP et al. (2014) Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Phys Chem Chem Phys 16(43):23908–23914CrossRefGoogle Scholar
  5. 5.
    Chakraborty A, Giri S, Chattaraj PK (2010) Trapping of noble gases (He–Kr) by the aromatic H3 + and Li3 + species: a conceptual DFT approach. New J Chem 34(9):1936–1945CrossRefGoogle Scholar
  6. 6.
    Khriachtchev L, Räsänen M, Gerber RB (2008) Noble-gas hydrides: new chemistry at low temperatures. Accounts Chem Res 42(1):183–191CrossRefGoogle Scholar
  7. 7.
    Khriachtchev L, Isokoski K, Cohen A et al. (2008) A small neutral molecule with two noble-gas atoms: HXeOXeH. J Am Chem Soc 130(19):6114–6118CrossRefGoogle Scholar
  8. 8.
    Ansbacher T, Gerber RB (2006) New organic noble gas molecules: energetics, stability and potential energy surfaces of HCCXeCCH and HCCKrCCH. Phys Chem Chem Phys 8(36):4175–4181CrossRefGoogle Scholar
  9. 9.
    Darzynkiewicz RB, Scuseria GE (1997) Noble gas endohedral complexes of C60 buckminsterfullerene. J Phys Chem A 101(38):7141–7144CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Wang G, Chen M et al. (2005) Noble gas-transition metal complexes: coordination of ScO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes. J Phys Chem A 109(30):6621–6623Google Scholar
  11. 11.
    Samanta D (2014) Prediction of superhalogen-stabilized noble gas compounds. J Phys Chem Lett 5(18):3151–3156Google Scholar
  12. 12.
    Zhao Y, Gong Y, Chen M et al. (2006) Noble gas-transition-metal complexes: coordination of VO2 and VO4 by Ar and Xe atoms in solid noble gas matrixes. J Phys Chem A 110(5):1845–1849Google Scholar
  13. 13.
    Bil A, Morrison CA (2012) Modifying the fullerene surface using endohedral noble gas atoms: density functional theory based molecular dynamics study of C70O3. J Phys Chem A 116(13):3413–3419CrossRefGoogle Scholar
  14. 14.
    Liu Z, Wu Y, Liu B et al. (2016) Tuning the adsorption and separation properties of noble gases and N2 in CuBTC by ligand functionalization. RSC Advances 6(94):91093–91101CrossRefGoogle Scholar
  15. 15.
    Mondal S, Chattaraj PK (2014) Noble gas encapsulation: clathrate hydrates and their HF doped analogue. Phys Chem Chem Phys 16(33):17943–17954CrossRefGoogle Scholar
  16. 16.
    Greenwood NN, Earnshaw A (2001) Chemistry of the Elements. Butterworth-Heinemann, OxfordGoogle Scholar
  17. 17.
    Pauling L (1933) The formulas of antimonic acid and the antimonates. J Am Chem Soc 55(5):1895–1900CrossRefGoogle Scholar
  18. 18.
    Bartlett N (1962) Xenon hexafluoroplatinate (V) XE+[PTF6]-. Proceedings of the Chemical Society of London, (June), p 218Google Scholar
  19. 19.
    Duncan FJ, Cvetanovic RJ (1962) Production and reactions of methylene in the triplet state. J Am Chem Soc 84(18):3593–3594Google Scholar
  20. 20.
    Turner JJ, Pimentel GC (1963) Krypton fluoride: preparation by the matrix isolation technique. Science 140(3570):974-5Google Scholar
  21. 21.
    Fields PR, Stein L, Zirin MH (1962) Radon fluoride. J Am Chem Soc 84(21):4164–4165CrossRefGoogle Scholar
  22. 22.
    Khriachtchev L, Pettersson M, Lignell A et al. (2001) A more stable configuration of HArF in solid argon. J Am Chem Soc 123(35):8610–8611CrossRefGoogle Scholar
  23. 23.
    Khriachtchev L, Lignell A, Tanskanen H et al. (2006) Insertion of noble gas atoms into cyanoacetylene: An ab initio and matrix isolation study. J Phys Chem A 110(42):11876–11885CrossRefGoogle Scholar
  24. 24.
    Feldman VI, Sukhov FF, Orlov AY et al. (2003) Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. J Am Chem Soc 125(16):4698–4699CrossRefGoogle Scholar
  25. 25.
    Goetschel CT, Loos KR (1972) Reaction of xenon with dioxygenyl tetrafluoroborate. Preparation of FXe-BF2. J Am Chem Soc 94(9):3018CrossRefGoogle Scholar
  26. 26.
    Zhu C, Niimi K, Taketsugu T et al. (2015) HXeI and HXeH in Ar, Kr, and Xe matrices: experiment and simulation. J Chem Phys 142(5):054305Google Scholar
  27. 27.
    Cheng C, Sheng L (2012) Ab initio study of HXeF dimer and trimer. Comput Theor Chem 989:39–43CrossRefGoogle Scholar
  28. 28.
    Ahokas J, Vaskonen K, Eloranta J et al. (2000) Electronic absorption spectra of HXeCl, HXeBr, HXeI, and HXeCN in Xe matrix. J Phys Chem A 104(42):9506–9511CrossRefGoogle Scholar
  29. 29.
    Antoniotti P, Borocci S, Bronzolino N et al. (2007) Noble gas anions: a theoretical investigation of FNgBN-(Ng= He−Xe). J Phys Chem A 111(40):10144–10151Google Scholar
  30. 30.
    Pettersson M, Khriachtchev L, Lundell J et al. (1999) A chemical compound formed from water and xenon: HXeOH. J Am Chem Soc 121(50):11904–11905Google Scholar
  31. 31.
    Pettersson M, Lundell J, Khriachtchev L et al. (1998) HXeSH, the first example of a xenon-sulfur bond. J Am Chem Soc 120(31):7979–7980Google Scholar
  32. 32.
    Ghanty TK (2005) Insertion of noble-gas atom Kr and Xe into moble-metal molecules (AuF and AuOH): are they stable? J Chem Phys 123(7):074323Google Scholar
  33. 33.
    Li TH, Mou CH, Chen HR et al. (2005) Theoretical prediction of noble gas containing anions FNgO-(Ng=He, Ar, Kr). J Am Chem Soc 127:9241–9245Google Scholar
  34. 34.
    Frenking G, Koch W, Gauss J et al. (1988) Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (Ng= He, Ar). A theoretical investigation. J Am Chem Soc 110(24):8007–8016Google Scholar
  35. 35.
    Pan S, Moreno D, Cabellos JL et al. (2014) In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. J Phys Chem A 118(2):487CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Chen M, Zhou M et al. (2015) Experimental and theoretical studies of the infrared spectra and bonding properties of NgBeCO3 and a comparison with NgBeO (Ng= He, Ne, Ar, Kr, Xe). J Phys Chem A 119:2543Google Scholar
  37. 37.
    Saha R, Pan S, Merino G et al. (2015) Comparative study on the noble-gas binding ability of BeX clusters (X= SO4, CO3, O). J Phys Chem A 119:6746Google Scholar
  38. 38.
    Pan S, Gupta A, Saha R, Merino G et al. (2015) A coupled-cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal= Cu, Ag, Au). J Comput Chem 36(29):2168CrossRefGoogle Scholar
  39. 39.
    Pan S, Saha R, Kumar A et al. (2016) A noble interaction: an assessment of noble gas binding ability of metal oxides (metal= Cu, Ag, Au). Int J Quantum Chem 116:1016Google Scholar
  40. 40.
    Li ZZ, Li AY, Ji LF (2015) Theoretical predictions of C3v symmetric three-H-bridged noble gas compounds NgBeH3BeR, NgBeH3BR+, and NgBH3BR2+. J Phys Chem A 119(30):8401Google Scholar
  41. 41.
    Li ZZ, Li AY (2017) Monocyclic aromatic compounds BnRgn(n-2)+ of boron and rare gases. Phys Chem Chem Phys 19:19109CrossRefGoogle Scholar
  42. 42.
    Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem phys 133(13):134105CrossRefGoogle Scholar
  43. 43.
    Peterson KA, Figgen D, Goll E et al. (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J Chem Phys 119(21):11113–11123CrossRefGoogle Scholar
  44. 44.
    MJ Frisch, GW Trucks, HB Schlegel et al. (2009) Gaussian 09, revision A. 02. Gaussian Inc, Wallingford Google Scholar
  45. 45.
    Reed AE, Weinhold F, Curtiss LA et al. (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84(10):5687–5705Google Scholar
  46. 46.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  47. 47.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592Google Scholar
  48. 48.
    EJ Baerends et al. (2013) ADF2013.01, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, The NetherlandsGoogle Scholar
  49. 49.
    Velde GT, Bickelhaupt FM, Baerends EJ et al. (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRefGoogle Scholar
  50. 50.
    Pyykkö P (2015) Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J Phys Chem A 119:2328–2331CrossRefGoogle Scholar
  51. 51.
    Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197Google Scholar
  52. 52.
    Pyykkö P (2015) Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J Phys Chem A 119:2326–2337CrossRefGoogle Scholar
  53. 53.
    Politzer P, Murray JS, Lane P (2003) Electrostatic potentials and covalent radii. J Comput Chem 24(4):506–510CrossRefGoogle Scholar
  54. 54.
    Feng XJ, Zhang M, Zhao LX et al. (2014) A theoretical study of structures and chemical bonding of mixed clusters X3Y3H6 (X= B, Al, Ga, In Y= N, P, As, Sb). Comput Theor Chem 1029:84–90CrossRefGoogle Scholar
  55. 55.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  56. 56.
    Chen Z, Wannere CS, Corminboeuf C et al. (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105(10):3842–3888CrossRefGoogle Scholar
  57. 57.
    Gomes J, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101(5):1349–1384CrossRefGoogle Scholar
  58. 58.
    Johansson MP, Jusélius J, Sundholm D (2005) Sphere currents of buckminsterfullerene. Angew Chem Int Edit 44(12):1843–1846CrossRefGoogle Scholar
  59. 59.
    Schleyer PR, Maerker C, Dransfeld A et al. (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318CrossRefGoogle Scholar
  60. 60.
    Wu HS, Jiao H, Wang ZX et al. (2003) Monocyclic boron carbonyls: novel aromatic compounds. J Am Chem Soc 125(15):4428–4429Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations