Skip to main content
Log in

Theoretical study on p-type D-π-A sensitizers with modified π-spacers for dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based on a prototype sensitizer W2, we designed triarylamine-based p-type sensitizers W2-1 to W2-7 that contain modified π-spacers (π'), a π-spacer and two anchors. For W2-1 to W2-4, instead of 2,1,3-benzothiadiazole in W2, thieno[3,4-b]-1,4-dioxin, thiophene, thieno[3,4-c][1,2,5]thiadizole, thiazolo[5,4-d]thiazole are π' and thiophene as π-spacer. For W2-5 to W2-8, π' and π are same, with 2,1,3-benzothiadiazole, thieno[3,4-b]-1,4-dioxin, thieno[3,4-c][1,2,5]thiadiazo, thiazolo[5,4-d]thiazole, respectively, as the π'-spacers. Structure optimization, electronic level and absorption characters were calculated with density functional theory (DFT) and time-dependent DFT (TDDFT) at the CAM-B3LYP/6-311G (d,p). The solvent effect was involved using a polarized continuum model in chloroform. The results showed that the highest occupied molecular orbital and the lowest unoccupied molecular orbital guarantee sufficient hole injection (lower than –0.2 eV), and dye regeneration (lower than –0.2 eV). W2-4 has higher light-harvesting efficiency (LHE) (0.994) and larger overlap with the visible light from 400 nm to 600 nm. Finally, the results suggest that the driving force of hole injection, dye regeneration and charge recombination (ΔGinj, ΔGreg and ΔGCR) of W2-4 are the best, with more negative ΔGinj (–4.33), ΔGreg (–1.74) and more positive ΔGCR (1.92). Replacing 2,1,3-benzothiadiazole with thiazolo[5,4-d]thiazole as π'-spacers is a effective way to improve the performance of the dyes. An introduction of thiazolo[5,4-d]thiazole group can improve the absorption ability and hinder charge recombination.

Absorption spectra of p-type D-π-A sensitizers with modified π-spacers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baxter JB, Aydil ES (2005) Appl Phys Lett 86:053114. https://doi.org/10.1063/1.1861510

    Article  Google Scholar 

  2. O'Regan B, Grätzel M (1991) Nature 353(6346):737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  3. Grätzel M (2001) Nature 414:338–344. https://doi.org/10.1351/pac200173030459

    Article  Google Scholar 

  4. Mathew S, Yella A, Gao P, Humphry Baker R, Curchod BFE, Ashari Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nature Chem 6(3):242–247. https://doi.org/10.1038/nchem.1861

    Article  CAS  Google Scholar 

  5. Martinez-Diaz MV, de la Torre G, Torres T (2010) Chem Commun 46:7090–7108. https://doi.org/10.1039/C0CC02213F

    Article  CAS  Google Scholar 

  6. Imahori H, Umeyama T, Ito S, Large (2009) Acc Chem Res 42:1809. https://doi.org/10.1021/ar900034t

    Article  CAS  Google Scholar 

  7. Bessho T, Zakeeruddin SM, Yeh CY (2010) Angew Chem 122:6796. https://doi.org/10.1002/anie.201002118

    Article  Google Scholar 

  8. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474–2499. https://doi.org/10.1002/anie.200804709

    Article  CAS  Google Scholar 

  9. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem 121:2510–2536. https://doi.org/10.1002/ange.200804709

    Article  Google Scholar 

  10. Ren XF, Kang GJ, He QQ (2016) J Mol Model 22(1):8. https://doi.org/10.1007/s00894-015-2870-3

    Article  Google Scholar 

  11. Ning Z, Tian H (2009) Chem Commun 37:5483. https://doi.org/10.1039/B908802D

    Article  Google Scholar 

  12. Perera IR, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin CA, Bach U, Spiccia L (2015) Angew Chem Int Ed 54:3758. https://doi.org/10.1002/anie.201409877

    Article  CAS  Google Scholar 

  13. Nattestad A, Mozer AJ, Fischer MKR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Nat Mater 9:31. https://doi.org/10.1038/nmat2588

    Article  CAS  Google Scholar 

  14. Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130(27):8570. https://doi.org/10.1021/ja8001474

    Article  CAS  Google Scholar 

  15. Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759. https://doi.org/10.1002/adma.200903151

    Article  CAS  Google Scholar 

  16. Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L (2009) Adv Mater 21:2993–2996. https://doi.org/10.1002/adma.200802461

    Article  CAS  Google Scholar 

  17. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) ChemRev 110:6595. https://doi.org/10.1021/cr900356p

    CAS  Google Scholar 

  18. Li HB, Zhang J, Wu Y, Jin JL, Duan YA, Su ZM, Geng Y (2014) Dyes Pigments 108:106. https://doi.org/10.1016/j.dyepig.2014.04.029

    Article  CAS  Google Scholar 

  19. Huang Z, Natu G, Ji Z, He M, Yu M, Wu Y (2012) J Phys Chem C 116:26239. https://doi.org/10.1021/jp310053f

    Article  CAS  Google Scholar 

  20. Wu F, Liu J, Li X, Song Q, Wang M, Zhong C, Zhu L (2015) Eur J Org Chem 31:6850. https://doi.org/10.1002/ejoc.201501036

    Article  Google Scholar 

  21. Liu Z, Li W, Topa S, Xu X, Zeng X, Zhao Z, Wang M, Chen W, Wang F, Cheng YB, He H (2014) ACS Appl Mater Interfaces 6(13):10614. https://doi.org/10.1021/am5022396

    Article  CAS  Google Scholar 

  22. Sharma GD, Mikroyannidis JA, Roy MS, Thomas KJ, Ball RJ, Kurchania R (2012) RSC Adv 2(30):11457. https://doi.org/10.1039/C2RA21718J

    Article  CAS  Google Scholar 

  23. Dhanabalan A, Van Duren JKJ, Van Hal PA (2001) Adv Funct Mater 11(4):255–262. https://doi.org/10.1002/pola.23582

    Article  CAS  Google Scholar 

  24. Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, Rubinstein-Dunlop H, Shaw PE, Kopidakis N, Burn PL (2011) Adv Energy Mater 1(1):73. https://doi.org/10.1002/aenm.201000024

    Article  CAS  Google Scholar 

  25. Odobel F, Pleux L, Pellegrin Y, Blart E (2010) Accounts Chem Res 43(8):1063–1071. https://doi.org/10.1021/ar900275b

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 (Revision A.2) Gaussian, Inc., Wallingford

    Google Scholar 

  27. Becke AD (1988) Physical Review A 38(6):3098. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  29. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393(1):51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  30. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115(8):3540–3544. https://doi.org/10.1063/1.1383587

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2006) J Phys Chem 110(15):5121–5129. https://doi.org/10.1021/jp060231d

    Article  CAS  Google Scholar 

  32. Kang JK, Musgrave CB (2001) J Chem Phys 115(24):11040–11051. https://doi.org/10.1063/1.1415079

    Article  CAS  Google Scholar 

  33. Adamo C, Barone V (1999) J Chem Phys 110(13):6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  34. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10(44):6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  Google Scholar 

  35. Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130(27):8570–8571. https://doi.org/10.1021/ja8001474

    Article  CAS  Google Scholar 

  36. Zhang F, Yu P, Shen W, Li M, He R (2015) RSC Advances 5(79):64378–64386. https://doi.org/10.1039/C5RA09263A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.Y. thanks the Innovation Project for Postgraduates in Universities of Jiangsu Province and the Innovation Funding from the Graduate School of Nanjing University of Science and Technology (NJUST) (No. SJLX16_0140) for partially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Electronic supplementary material

ESM 1

(DOC 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Chaitanya, K., Sun, ZD. et al. Theoretical study on p-type D-π-A sensitizers with modified π-spacers for dye-sensitized solar cells. J Mol Model 24, 68 (2018). https://doi.org/10.1007/s00894-018-3596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3596-9

Keywords

Navigation