Advertisement

Ab initio scrutiny of endohedral C20 fullerenes implanted in between gold electrodes

  • Milanpreet Kaur
  • Ravinder Singh Sawhney
  • Derick Engles
Original Paper

Abstract

Using the smallest non-classical fullerene, we investigate the impact of endohedral fullerene molecules on the quantum transport through molecular junctions, and then compared this with the pure C20-based molecular junction. By employing the density functional theory combined with the non-equilibrium Green’s function, we contemplated different electronic parameters, namely, density of states, transmission coefficient, energy levels, molecular orbitals, conduction gaps, electron density and their charge transfer. A knowledge of these physical parameters is necessary in order to calculate current and conductance computed using Landauer-Büttiker formalism. The molecule-electrode coupling influenced by endohedral molecules affects junction devices in a unique manner. We observe that the highest quantum transport is possible in an Au–N@C20–Au and Au–O@C20–Au junction device, and is even higher than that of the intrinsic C20 fullerene junction. Another notable observation is that the F@C20 molecule exhibits the least conducting nature, being even lower than that of the endohedral molecule formed by inserting the noble element, neon.

Graphical abstract

Electrical characteristics of Endohedral fullerene junctions

Keywords

Density functional theory Molecular orbital Fullerenes Non-equilibrium Green’s function 

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113CrossRefGoogle Scholar
  3. 3.
    Hebard AF, Rosseinsky MJ, Haddon RC (1991) Nature 350:600CrossRefGoogle Scholar
  4. 4.
    Kroto HW (1997) Rev Mod Phys 69:703CrossRefGoogle Scholar
  5. 5.
    Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff B v (2000) Nature 407(60)Google Scholar
  6. 6.
    Kroto HW (1987) Nature 329:529CrossRefGoogle Scholar
  7. 7.
    Lin F, Sorensen ES, Kallin C, Berlinsky AJ (2007) Phys Rev B 76:033414CrossRefGoogle Scholar
  8. 8.
    Song H, Reed MA, Lee T (2011) Adv Mater 23:1583CrossRefGoogle Scholar
  9. 9.
    Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Durkan C (2007) Current at the nanoscale. Imperial College Press, LondonGoogle Scholar
  11. 11.
    Kaur M, Sawhney RS, Engles D (2016) Mater Today: Proceedings 3:1304CrossRefGoogle Scholar
  12. 12.
    Kaur M, Sawhney RS, Engles D (2015) Quantum Matter 4:182CrossRefGoogle Scholar
  13. 13.
    Kaur M, Sawhney RS, Engles D (2013) J Multiscale Model 5:1350010.  https://doi.org/10.1142/S1756973713500108 CrossRefGoogle Scholar
  14. 14.
    Kaur M, Sawhney RS (2016) Mater Today: Proceedings 3:2422CrossRefGoogle Scholar
  15. 15.
    Cerón MR, Li F, Echegoyen LA (2014) J Phys Org Chem 7:258CrossRefGoogle Scholar
  16. 16.
    Bethune DS, Johnson RD, Salem JR, DE Vries MS, Yannoni CS (1993) Nature 366:123CrossRefGoogle Scholar
  17. 17.
  18. 18.
    An Y, Yang C, Wang M, Ma X, Wang D (2010) Curr Appl Phys 10:260CrossRefGoogle Scholar
  19. 19.
    An Y, Yang C, Wang M, Ma X, Wang D (2010) Chin Phys B 19Google Scholar
  20. 20.
    Wu J, Sun Z, Li X, Ma B, Tian M, Li S (2011) Internat J Quant Chem 111:3786Google Scholar
  21. 21.
    An Y, Yang C, Wang M, Ma X, Wang D (2011) J Clust Sci 22:31CrossRefGoogle Scholar
  22. 22.
    Kumar R, Rani A (2011) Physica B 406:1173CrossRefGoogle Scholar
  23. 23.
    Baei MT, Soltani A, Torabi P, Hosseini F (2014) Monat Chem 145:1401CrossRefGoogle Scholar
  24. 24.
    Kaur M, Sawhney RS, Engles D (2016) J Mater Res 31:2025CrossRefGoogle Scholar
  25. 25.
    Kaur M, Sawhney RS, Engles D (2016) Mol Phys 114:3255CrossRefGoogle Scholar
  26. 26.
    Kaur M, Sawhney RS (2012) J Multiscale Model 4 (3) 1250011Google Scholar
  27. 27.
    Roland C, Larade B, Taylor J, Guo H (2010) Phys Rev B: Condens Matter Mater Phys 65:041401(R)CrossRefGoogle Scholar
  28. 28.
    Kaur M, Sawhney RS, Engles D (2013) International conference on advanced nanomaterials and emerging engineering technologies, (ICANMEET). IEEE, Chennai 2013:426–430Google Scholar
  29. 29.
    Stokbro K (2008) J Phys Condens Matter 20:064216CrossRefGoogle Scholar
  30. 30.
    Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016)Google Scholar
  31. 31.
    Strange M, Kristensen S, Thygesen KS, Jacobsen KW (2008) J Chem Phys 128:114714CrossRefGoogle Scholar
  32. 32.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  33. 33.
    Kaur M, Sawhney RS, Engles D (2017) J Mater Res 32:414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations