Skip to main content
Log in

QSPR modeling of optical rotation of amino acids using specific quantum chemical descriptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Many chemical phenomena occur in solution. Different solvents can change the optical activity of chiral molecules. The optical rotation angles of solutes of 75 amino acids in dimethylformamide, water and methanol were analyzed using the quantitative structure–activity relationships approach. For an accurate description of chirality, we used specific quantum chemical descriptors, which reflect the properties of a chiral center, and continuous symmetry measures. The set of specific quantum chemical descriptors for atoms located near the chiral center, such as Mulliken charges, the sum of Mulliken charges on an atom (with the hydrogen charges summed up with the adjacent non-hydrogen atoms), and nuclear magnetic resoncance tensors was applied. To represent solvent effects, we used mixture-like structural simplex descriptors and quantum chemical descriptors obtained for structures optimized for specified solvent using PBE1PBE/6-31G** level of theory with the polarizable continuum model. Multiple linear regression, M5P, and locally weighted learning techniques were used to achieve accurate predictions. The specific quantum chemical descriptors proposed here demonstrated high specificity in the majority of the developed models and established direct quantitative structure–property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d

Similar content being viewed by others

References

  1. Norden B (1977) Was photoresolution of amino acids the origin of optical activity in life? Nature 266:567–568

    Article  CAS  Google Scholar 

  2. Randić M, Razinger M (1996) Molecular shapes and chirality. J Chem Inf Comput Sci 36:429–441. https://doi.org/10.1021/ci950091x

    Article  Google Scholar 

  3. de Julián-Ortiz JV, de Gregorio Alapont C, Rios-Santamarina I et al (1998) Prediction of properties of chiral compounds by molecular topology. J Mol Graph Model 16:14–18. https://doi.org/10.1016/S1093-3263(98)00013-8

    Article  Google Scholar 

  4. Vol’kenshtein MV, Kruchek MP (1961) Optical activity of amino acids. J Struct Chem 2:49–52. https://doi.org/10.1007/BF00744855

    Article  Google Scholar 

  5. Zemlicka J (2000) Enantioselectivity of the antiviral effects of nucleoside analogues. Pharmacol Ther 85:251–266

    Article  CAS  Google Scholar 

  6. Maury G (2000) The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 165–189

  7. Mathé C, Gosselin G (2006)l-Nucleoside enantiomers as antivirals drugs: a mini-review. Antiviral Res 71:276–281. https://doi.org/10.1016/j.antiviral.2006.04.017

    Article  Google Scholar 

  8. Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Oncol Break Res Pract Break Res Pract 67. https://doi.org/10.4018/IJQSPR.2016010101

  9. Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56:1127–1131

    Article  CAS  Google Scholar 

  10. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz'min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Asteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010. https://doi.org/10.1021/jm4004285

    Article  CAS  Google Scholar 

  11. Pogliani L (1994) Structure property relationships of amino acids and some dipeptides. Amino Acids 6:141–153

    Article  CAS  Google Scholar 

  12. Pogliani L (1993) Molecular connectivity model for determination of physicochemical properties of. alpha.-amino acids. J Phys Chem 97:6731–6736

    Article  CAS  Google Scholar 

  13. Liu HX, Zhang RS, Yao XJ et al (2004) Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. J Chem Inf Comput Sci 44:161–167

    Article  CAS  Google Scholar 

  14. Tham SY, Agatonovic-Kustrin S (2002) Application of the artificial neural network in quantitative structure–gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives. J Pharm Biomed Anal 28:581–590

    Article  CAS  Google Scholar 

  15. Zaliani A, Gancia E (1999) MS-WHIM scores for amino acids: a new 3D-description for peptide QSAR and QSPR studies. J Chem Inf Comput Sci 39:525–533

    Article  CAS  Google Scholar 

  16. Lin Z, Long H, Bo Z et al (2008) New descriptors of amino acids and their application to peptide QSAR study. Peptides 29:1798–1805

    Article  CAS  Google Scholar 

  17. Tian F, Zhou P, Li Z (2007) T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J Mol Struct 830:106–115

    Article  CAS  Google Scholar 

  18. Tong J, Liu S, Zhou P et al (2008) A novel descriptor of amino acids and its application in peptide QSAR. J Theor Biol 253:90–97

    Article  CAS  Google Scholar 

  19. Fauchère J-L, Lauterwein J (1985) The chemical shift of the alpha carbon in amino-acids as a parameter for QSAR studies of oligopeptides. Quant Struct Relationships 4:11–13. https://doi.org/10.1002/qsar.19850040103

    Article  Google Scholar 

  20. Mennucci B, Tomasi J, Cammi R et al (2002) Polarizable Continuum Model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113. https://doi.org/10.1021/jp020124t

    Article  CAS  Google Scholar 

  21. Mukhopadhyay P, Zuber G, Goldsmith M-R et al (2006) Solvent effect on optical rotation: a case study of methyloxirane in water. ChemPhysChem 7:2483–2486. https://doi.org/10.1002/cphc.200600477

    Article  CAS  Google Scholar 

  22. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  23. Sarmah P, Deka RC (2009) DFT-based QSAR and QSPR models of several cis-platinum complexes: solvent effect. J Comput Aided Mol Des 23:343–354. https://doi.org/10.1007/s10822-009-9265-4

    Article  CAS  Google Scholar 

  24. Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1044. https://doi.org/10.1021/cr950202r

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenb DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford CT

  26. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  27. Okovytyy S, Kopteva S, Voronkov E et al (2013) 1H NMR spectra of N-Methyl-4-Tolyl-1-(4-Bromonaphthyl)-Amine and N-Phenyl-1-(4-Bromonaphthyl)-Amine: a combined experimental and theoretical study. Bull Dnipropetr Univ Chem 21:7–15

    Article  Google Scholar 

  28. Verma RP, Hansch C (2011) Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem Rev 111:2865–2899. https://doi.org/10.1021/cr100125d

    Article  CAS  Google Scholar 

  29. Zabrodsky H, Peleg S, Avnir D (1992) Continuous symmetry measures. J Am Chem Soc 114:7843–7851. https://doi.org/10.1021/ja00046a033

    Article  CAS  Google Scholar 

  30. Kuz’min V, Artemenko A, Muratov E (2008) Hierarchical QSAR technology based on the Simplex representation of molecular structure. J Comput Aided Mol De. 22:403–421

  31. Muratov EN, Varlamova EV, Artemenko AG et al (2012) Existing and developing approaches for QSAR analysis of mixtures. Mol Inform 31:202–221. https://doi.org/10.1002/minf.201100129

    Article  CAS  Google Scholar 

  32. KNIME.com (2017) KNIME https://www.knime.com/

  33. Gramatica P, Chirico N, Papa E et al (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132. https://doi.org/10.1002/jcc.23361

    Article  CAS  Google Scholar 

  34. Frank E, Hall M, Pfahringer B (2003) Locally weighted naive bayes. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence. Kaufmann, San Francisco, pp 249–256

  35. Jones DE, Ghandehari H, Facelli JC (2016) A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput Methods Programs Biomed 132:93–103. https://doi.org/10.1016/j.cmpb.2016.04.025

    Article  Google Scholar 

  36. Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51:2320–2335. https://doi.org/10.1021/ci200211n

    Article  CAS  Google Scholar 

  37. Gadaleta D, Mangiatordi GF, Catto M et al (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct Relationships 1:45–63

    Article  Google Scholar 

  38. Roy K, Ambure P, Aher RB (2017) How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemom Intell Lab Syst 162:44–54. https://doi.org/10.1016/j.chemolab.2017.01.010

    Article  CAS  Google Scholar 

  39. Aniceto N, Freitas AA, Bender A, Ghafourian T (2016) A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. J Cheminform 8:69. https://doi.org/10.1186/s13321-016-0182-y

    Article  Google Scholar 

  40. Cao D-S, Deng Z-K, Zhu M-F et al (2017) Ensemble partial least squares regression for descriptor selection, outlier detection, applicability domain assessment, and ensemble modeling in QSAR/QSPR modeling. J Chemom 31:e2922. https://doi.org/10.1002/cem.2922

    Article  Google Scholar 

  41. Miller J, Parker AJ (1961) Dipolar aprotic solvents in bimolecular aromatic nucleophilic substitution reactions. J Am Chem Soc 83:117–123. https://doi.org/10.1021/ja01462a023

    Article  CAS  Google Scholar 

  42. Lutz O, Jirgensons B (1931) New method for the grouping of optically active a-amino acids in the dextro-or levo-series. II. Abhandlungen 64:1221–1232

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding of this research by the Ministry of Education and Science of Ukraine (Project #0116U001520), National Science Foundation (NSF/CREST HRD-1547754) and PREM (DMR-1205194) grants. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (grant #ACI-1053575).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karina Kapusta or Jerzy Leszczynski.

Additional information

This paper is dedicated to Peter Politzer as a recognition of his outstanding contributions to the field of quantum and computational chemistry on the occasion of his 80th birthday.

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift.

Eugene Voronkov is an independent researcher.

Electronic supplementary material

ESM 1

(DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapusta, K., Sizochenko, N., Karabulut, S. et al. QSPR modeling of optical rotation of amino acids using specific quantum chemical descriptors. J Mol Model 24, 59 (2018). https://doi.org/10.1007/s00894-018-3593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3593-z

Keywords

Navigation