Skip to main content
Log in

Assessment of ten density functionals through the use of local hyper–softness to get insights about the catalytic activity

Iron–based organometallic compounds for ethylene polymerization as testing molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ten functionals were used to assess their capability to compute a local reactivity descriptor coming from the Conceptual Density Functional Theory on a group of iron–based organometallic compounds that have been synthesized by Zohuri, G.H. et al. in 2010; these compounds bear the following substituent groups: H-, O2N- and CH3O- at the para position of the pyridine ring and their catalytic activities were experimentally measured by these authors. The present work involved a theoretical analysis applied on the aforementioned iron–based compounds thus leading to suggest a new 2,6-bis(imino)pyridine catalyst based on iron(II) bearing a fluorine atom whose possible catalytic activity is suggested to be near the catalytic activity of the complex bearing a hydrogen atom as a substituent group by means of the so called local hyper-softness (LHS) thus opening a chance to estimate a possible value of catalytic activity for a new catalyst that has not been synthesized yet without simulating the entire process of ethylene polymerization. Since Conceptual DFT is not a predictive theory, but rather interpretative, an analysis of the used reactivity descriptor and its dependence upon the level of theory was carried in the present work, thus revealing that care should be taken when DFT calculations are used for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thiel W (2014) Angew Chem Int Ed 53:8605–8613

    Article  CAS  Google Scholar 

  2. Jesús Jover J, Fey N (2014) Chem Asian J 9:1714–1723

    Article  Google Scholar 

  3. Das P, Dockter D, Fahey D, Lauffer D, Hawkins G, Li J, Zhu T, Cramer C, Truhlar D, Dapprich S, Froese R, Holthausen M, Liu Z, Mogi K, Vyboishchikov S, Musaev D, Morokuma K (1998) Ethylene polymerization by zirconocene catalysts. Research Report UMSI 98/112, Supercomputing Institute for Digital Simulation and Advanced Computation, 599 Walter Library, 117 Pleasant St. SE, Minneapolis, MN 55455

  4. Cruz VL, Muñoz Escalona A, Martínez-Salazar J (1998) J Polym Sci A Polym Chem 36:1157–1167

    Article  CAS  Google Scholar 

  5. Petitjean L, Pattou D, Ruiz-López MF (2001) J Mol Struct THEOCHEM 541:227–235

    Article  CAS  Google Scholar 

  6. Woo T, Deng L, Margl P, Ziegler T (2000) In: Scheirs J, Kaminsky W (eds) Metallocene-based polyolefins. Wiley Series in Polymer Science, Chichester, pp 69–88

  7. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  8. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  9. Gázquez J, Galván M, Vela A (1990) J Mol Struct THEOCHEM 210:29–38

    Article  Google Scholar 

  10. Parr R, Yang W (1989) Density–functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  11. Senet P (1996) J Chem Phys 105:6471–6489

    Article  CAS  Google Scholar 

  12. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  13. Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  14. Johnson P, Bartolotti L, Ayers P, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge-density analysis. Springer, New York, pp 715–764

  15. Ayers P, Morell C, De Proft F, Geerlings P (2007) Chem Eur J 13:1521–3765

    Article  Google Scholar 

  16. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

    Article  CAS  Google Scholar 

  17. Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, Proft FD (2012) Acc Chem Res 45:683–695

    Article  CAS  Google Scholar 

  18. Contreras RR, Fuentealba P, Galván M, Pérez P (1999) Chem Phys Lett 304:405–413

    Article  CAS  Google Scholar 

  19. Fuentealba P, Pérez P, Contreras R (2000) J Chem Phys 113:2544–2551

    Article  CAS  Google Scholar 

  20. Galván M, Vela A, Gázquez JL (1988) J Phys Chem 92:6470–6474

    Article  Google Scholar 

  21. Galván M, Vargas R (1992) J Phys Chem 96:1625–1630

    Article  Google Scholar 

  22. Ghanty T, Ghosh S (1994) J Am Chem Soc 116:3943–3948

    Article  CAS  Google Scholar 

  23. Chamorro E, Pérez P (2005) J Chem Phys 123:114107

    Article  Google Scholar 

  24. Pérez P, Chamorro E, Ayers P (2008) J Chem Phys 128:204108

    Article  Google Scholar 

  25. Chamorro E, Pérez P, Duque M, De Proft F, Geerlings P (2008) J Chem Phys 129:064117

    Article  CAS  Google Scholar 

  26. Labet V, Morell C, Grand A, Cadet J, Cimino P, Barone V (2008) Org Biomol Chem 6:3300–3305

    Article  CAS  Google Scholar 

  27. Labet V, Morell C, Cadet J, Eriksson LA, Grand A (2009) J Phys Chem A 113(11):2524–2533

    Article  CAS  Google Scholar 

  28. Heiland K, Kaminsky W (1992) Die Makromolekulare Chemie 193:601–610

    Article  CAS  Google Scholar 

  29. Kaminsky W (1996) Macromol Chem Phys 197:3907–3945

    Article  CAS  Google Scholar 

  30. D’Agnillo L, Soares J, Penlidis A (1998) Macromol Chem Phys 199:955–962

    Article  Google Scholar 

  31. Kaminsky W, Laban A (2001) Appl Catal Gen 222:47–61

    Article  CAS  Google Scholar 

  32. Pédetour JN, Radhakrishnan K, Cramail H, Deffieus A (2001) Macromol Rapid Commun 22:1095–1123

    Article  Google Scholar 

  33. Chen EYX, Marks T (2000) Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  34. Small BL, Brookhart M (1998) J Am Chem Soc 120:7143–7144

    Article  CAS  Google Scholar 

  35. Britovsek GJP, Gibson VC, McTavish SJ, Solan GA, White AJP, Williams DJ, Britovsek GJP, Kimberley BS, Maddox PJ (1998) Chem Commun, pp 849–850

  36. Martínez J, Cruz V, Ramos J, Gutiérrez-Oliva S, Martínez-Salazar J, Toro-Labbé A (2008) J Phys Chem C 112:5023–5028

    Article  Google Scholar 

  37. Raucoules R, de Bruin T, Raybaud P, Adamo C (2008) Organometallics 27:3368–3377

    Article  CAS  Google Scholar 

  38. Zohuri G, Seyedi S, Sandaroos R, Damavandi S, Mohammadi A (2010) Catal Lett 140:160–166

    Article  CAS  Google Scholar 

  39. Zurek E, Woo T, Firman T, Ziegler T (2001) Inorg Chem 40:361–370

    Article  CAS  Google Scholar 

  40. Zurek E, Ziegler T (2001) Inorg Chem 40:3279–3292

    Article  CAS  Google Scholar 

  41. Zurek E, Ziegler T (2002) Organometallics 21:83–92

    Article  CAS  Google Scholar 

  42. Martínez-Araya JI, Grand A, Glossman-Mitnik D (2015) Phys Chem Chem Phys 17:29764–29775

    Article  Google Scholar 

  43. Martínez-Araya JI (2013) J Phys Chem C 117:24773–24786

    Article  Google Scholar 

  44. Morell C, Hocquet A, Grand A, Jamart-Grégoire B (2008) J Mol Struct THEOCHEM 849:46–51

    Article  CAS  Google Scholar 

  45. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  46. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342–346

    Article  CAS  Google Scholar 

  47. Morell C, Grand A, Toro-Labbé A, Chermette H (2013) J Mol Model 19:2893–2900

    Article  CAS  Google Scholar 

  48. Koopmans T (1933) Physica 18:104–113

    Google Scholar 

  49. Stowasser R, Hoffmann R (1999) J Am Chem Soc 121:3414–3420

    Article  CAS  Google Scholar 

  50. Zevallos J, Toro-Labbé A (2003) J Chil Chem Soc 48:39–47

    Article  CAS  Google Scholar 

  51. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  52. Nikitin SV, Nikitin VV, Oleynik II, Oleynik IV, Bagryanskaya EG (2016) J Mol Catal A Chem 423:285–292

    Article  CAS  Google Scholar 

  53. Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 527:67–72

    Article  CAS  Google Scholar 

  54. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  55. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  56. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  57. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264–6271

    Article  CAS  Google Scholar 

  58. Boese AD, Doltsinis NL, Handy NC, Sprik M (2000) J Chem Phys 112:1670–1678

    Article  CAS  Google Scholar 

  59. Boese AD, Handy NC (2001) J Chem Phys 114:5497–5503

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215– 241

    Article  CAS  Google Scholar 

  61. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  62. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  64. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  65. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  66. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  67. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  68. Van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400– 410

    Article  Google Scholar 

  69. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  70. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978–4978

    Article  CAS  Google Scholar 

  71. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  72. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  73. Roy L, Hay P, Martin R (2008) J Chem Theory Comput 4:1029–1031

    Article  CAS  Google Scholar 

  74. Wachters A (1970) Physics 52:1033–1036

    CAS  Google Scholar 

  75. Hay P (1977) J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  76. Krishnan R, Binkley J, Seeger R, Pople J (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  77. McLean A, Chandler G (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  78. Raghavachari K, Trucks G (1989) J Chem Phys 91:1062–1065

    Article  Google Scholar 

  79. Binning R, Curtiss LA (1990) J Comput Chem 11:1206–1216

    Article  CAS  Google Scholar 

  80. McGrath M, Radom L (1991) J Chem Phys 94:511–516

    Article  CAS  Google Scholar 

  81. Curtiss L, McGrath M, Blaudeau JP, Davis N, Binning R Jr, Radom L (1995) J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  82. Blaudeau JP, McGrath M, Curtiss L, Radom L (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  83. Clark T, Chandrasekhar J, Spitznagel G, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  84. Frisch M, Pople J, Binkley J (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  85. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  86. Frisch M et al (2009) Gaussian 09 revision e.01. Gaussian Inc. Wallingford CT

  87. Gorelsky SI (2013) Aomix: Program for molecular orbital analysis; version 6.88 University of Ottawa. http://www.sg-chem.net/

  88. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  89. Peverati R, Truhlar DG (2014) Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372(2011):20120476

    Article  Google Scholar 

  90. Jensen F (2017) Introduction to computational chemistry, 3rd edn. Wiley, Chichester

    Google Scholar 

  91. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:16187–16191

    Article  CAS  Google Scholar 

  92. Yu HS, He X, Li SL, Truhlar DG (2016) Chem Sci 7:5032–5051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.I. Martínez-Araya wishes to thank the financial support coming from FONDECYT grant N 1140289 and ICM, Millennium Nucleus Chemical Processes and Catalysis (CPC) grant N 120082. D. Glossman-Mitnik is a researcher of CIMAV and CONACYT (Mexico) and acknowledges both institutions for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge I. Martínez-Araya.

Additional information

This paper belongs to Topical Collection P. Politzer 80th Birthday Festschrift

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TEX 32.6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Araya, J.I., Glossman-Mitnik, D. Assessment of ten density functionals through the use of local hyper–softness to get insights about the catalytic activity. J Mol Model 24, 42 (2018). https://doi.org/10.1007/s00894-017-3576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3576-5

Keywords

Navigation