Skip to main content
Log in

Reactivity of silagermenylidene toward nitrous oxide: a preliminary DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The possible reaction mechanism of silagermenylidene and its NHC (N–heterocyclic carbene) coordinated form with N2O were investigated by DFT methods. Mainly, the potential energy surfaces of the five pathways I–IV were explored. Pathways I, II, III, and III’ deal with the oxidation of silagermenylidene, whereas that of NHC coordinated form is associated with pathways I, III, III’, and IV. Pathway I is initiated by the interaction between terminal N atom of N2O and Si atom of silagermenylidene in a stepwise manner. Pathway II details concerted direct oxidation of silagermenylidene. Pathways III and III’ are related to the concerted 1,3–dipolar cycloaddition steps. Pathway IV is about the interaction of terminal atoms of N2O with carbenic Ge atom of silagermenylidene. All the proposed pathways I–IV portray the isomerization of silagermenylidenes to silagermoxiranylidenes. The subsequent N2O addition to the silagermoxiranylidenes was also investigated in the present study. Somehow with a trend similar to silagermenylidenes, the proposed pathways I–IV exist for the second molecule N2O activation by silagermoxiranylidenes. A comparison of the free energy profiles of the proposed pathways gave the important result that pathways III and III’ remain the most facile mechanisms to activate N2O in all cases. We strongly believe that the proposed mechanisms will be effective to better understand the chemistry of heavier vinylidenes and provide further impetus to this field.

The possible oxidation reaction mechanism of silagermenylidene with nitrous oxide was investigatedthrough density functional calculations. The concerted 1,3-dipolar cycloadditions are determined to beenergetically most facile pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zuck D, Ellis P, Dronsfield A (2012) Nitrous oxide: are you having a laugh? Educ Chem 49:26–29

    CAS  Google Scholar 

  2. Speth J, Biedler A, Mathers FG (2013) Nitrous oxide as analgesic in obstetrics: a new view of a well-tried method. Gynaekologe 46:129–132. https://doi.org/10.1007/s00129-013-3134-x

    Article  CAS  Google Scholar 

  3. Nagele P, Duma A, Kopec M, Gebara MA, Parsoei A, Walker M, Janski A, Panagopoulos VN, Cristancho P, Miller JP, Zorumski CF, Conway C (2015) Nitrous oxide for treatment-resistant major depression: a proof-of-concept trial. Biol Psychiatry 78:10–18. https://doi.org/10.1016/j.biopsych.2014.11.016

    Article  CAS  Google Scholar 

  4. Dameris M (2010) Depletion of the ozone layer in the 21st century. Angew Chem Int Ed 49:489–491. https://doi.org/10.1002/anie.200906334

    Article  CAS  Google Scholar 

  5. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. https://doi.org/10.1126/science.1176985

    Article  CAS  Google Scholar 

  6. Crutzen P, Lax G, Reinhardt C (2013) Paul Crutzen on the ozone hole, nitrogen oxides, and the nobel prize. Angew Chem Int Ed 52:48–50. https://doi.org/10.1002/anie.201208700

    Article  CAS  Google Scholar 

  7. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Box 1: greenhouse-gas emission factors. Nat Clim Chang 2:410–416. https://doi.org/10.1038/nclimate1458

    Article  CAS  Google Scholar 

  8. Pauleta SR, Dell’Acqua S, Moura I (2013) Nitrous oxide reductase. Coord Chem Rev 257:332–349. https://doi.org/10.1016/j.ccr.2012.05.026

    Article  CAS  Google Scholar 

  9. Perez-Ramirez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production: where do we stand today? Appl Catal B 44:117–151. https://doi.org/10.1016/S0926-3373(03)00026-2

    Article  CAS  Google Scholar 

  10. Panov GI, Dubkov KA, Kharitonov AS (2009) Modern heterogeneous oxidation catalysis. In: Noritaka M (ed) Nitrous oxide as an oxygen donor in oxidation chemistry and catalysis, vol 217. Wiley-VCH, Weinheim, p 252. https://doi.org/10.1002/9783527627547.ch7

    Google Scholar 

  11. Parmon VN, Panov GI, Noskov AS (2005) Nitrous oxide in oxidation chemistry and catalysis: application and production. Catal Today 100:115–131. https://doi.org/10.1016/j.cattod.2004.12.012

    Article  CAS  Google Scholar 

  12. Johnson BJ, Antholine WE, Lindeman SV, Graham MJ, Mankad NP (2016) A one-hole Cu4S cluster with N2O reductase activity: a structural and functional model for CuZ. J Am Chem Soc 138:13107–13110. https://doi.org/10.1021/jacs.6b05480

    Article  CAS  Google Scholar 

  13. Chan JM, Bollinger JA, Grewell CL, Dooley DM (2004) Reductively activated nitrous oxide reductase reacts directly with substrate. J Am Chem Soc 126:3030–3031. https://doi.org/10.1021/ja0398868

    Article  CAS  Google Scholar 

  14. Guesmi H, Berthomieu D, Kiwi-Minsker L (2008) Nitrous oxide decomposition on the binuclear [FeII(μ-O)(μ-OH)FeII] center in Fe-ZSM-5 zeolite. J Phys Chem C 112:20319–20328. https://doi.org/10.1021/jp808044r

    Article  CAS  Google Scholar 

  15. Yokelson HB, Millevolte AJ, Gillette GR, West R (1987) Disilaoxiranes: synthesis and crystal structure. J Am Chem Soc 109:6865–6866. https://doi.org/10.1021/ja00256a058

    Article  CAS  Google Scholar 

  16. Khan S, Michel R, Koley D, Roesky HW, Stalke D (2011) Reactivity studies of a disilene with N2O and elemental sulfur. Inorg Chem 50:10878–10883. https://doi.org/10.1021/ic201419m

    Article  CAS  Google Scholar 

  17. Wiberg N, Niedermayer W, Polborn K, Mayer P (2002) Reactivity of the isolable disilene R*PhSi=SiPhR* (R*=SitBu3). Chem Eur J 8:2730–2739. https://doi.org/10.1002/1521-3765(20020617)8:12<2730::AID-CHEM2730>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  18. Xiong Y, Yao S, Driess M (2013) Chemical tricks to stabilize silanones and their heavier homologues with E=O bonds (E=Si-Pb): from elusive species to isolable building blocks. Angew Chem Int Ed 52:4302–4311. https://doi.org/10.1002/anie.201209766

    Article  CAS  Google Scholar 

  19. Hadlington TJ, Szilvasi T, Driess M (2017) Synthesis of a metallo-Iminosilane via a silanone–metal π-complex. Angew Chem Int Ed 129:14470–14474. https://doi.org/10.1002/anie.201708923

    Article  Google Scholar 

  20. Krishnan R, Frisch MJ, Pople JA, Schleyer PR (1981) The vinylidene-acetylene isomerization barrier. Chem Phys Lett 79:408–411. https://doi.org/10.1016/0009-2614(81)85003-8

    Article  CAS  Google Scholar 

  21. Osamura Y, Schaefer III HF, Gray SK, Miller WH (1981) Vinylidene: a very shallow minimum on the C2H2 potential energy surface. J Am Chem Soc 103:1904–1907. https://doi.org/10.1021/ja00398a005

    Article  CAS  Google Scholar 

  22. Frenking G (1983) The neutral and ionic vinylidene-acetylene rearrangement. Chem Phys Lett 100:484–487. https://doi.org/10.1016/0009-2614(83)87413-2

    Article  CAS  Google Scholar 

  23. Stanton JF, Gauss J (1999) An estimation of the isomerization energy of acetylene. J Chem Phys 110:1831–1832. https://doi.org/10.1063/1.477890

    Article  CAS  Google Scholar 

  24. Vincent MA, Hillier IH, Periyasamy G, Burton NA (2010) A DFT study of the possible role of vinylidene and carbene intermediates in the mechanism of the enzyme acetylene hydratase. Dalton Trans 39:3816–3822. https://doi.org/10.1039/b924800e

    Article  CAS  Google Scholar 

  25. Hosseinnejad T, Fattahi B, Heravi MM (2015) Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: a review. J Mol Model 21:264–300. https://doi.org/10.1007/s00894-015-2810-2

    Article  Google Scholar 

  26. Osamura Y, Schaefer III HF (1981) Toward the spectroscopic identification of vinylidene, H2C=C. Chem Phys Lett 79:412–415. https://doi.org/10.1016/0009-2614(81)85004-X

    Article  CAS  Google Scholar 

  27. Sulzle D, Schwarz H (1989) The generation and identification of triplet vinylidene, [H2C=C]: by neutralization-reionization mass spectrometry. Chem Phys Lett 156:397–400. https://doi.org/10.1016/0009-2614(89)87115-5

    Article  Google Scholar 

  28. Chen C, Braams B, Lee DY, Bowman JM, Houstonand PL, Stranges D (2010) Evidence for vinylidene production in the photo dissociation of the allyl radical. J Phys Chem Lett 1:1875–1880. https://doi.org/10.1021/jz100638v

    Article  CAS  Google Scholar 

  29. Mills OS, Redhouse AD (1966) The structure of diphenylvinylideneoctacarbonyldi-iron. Chem Commun (London) 14:444–445. https://doi.org/10.1039/C19660000444

    Article  Google Scholar 

  30. Jana A, Huch V, Scheschkewitz D (2013) NHC-stabilized silagermenylidene: a heavier analogue of vinylidene. Angew Chem Int Ed 52:12179–12182. https://doi.org/10.1002/anie.201306780

    Article  CAS  Google Scholar 

  31. Jana A, Majumdar M, Huch V, Zimmer M, Scheschkewitz D (2014) NHC-coordinated silagermenylidene functionalized in allylic position and its behaviour as a ligand. Dalton Trans 43:5175–5181. https://doi.org/10.1039/c4dt00094c

    Article  CAS  Google Scholar 

  32. Ghana P, Arz MI, Das U, Schnakenburg G, Filippou AC (2015) Si=Si double bonds: synthesis of an NHC-stabilized disilavinylidene. Angew Chem 127:10118–10123. https://doi.org/10.1002/anie.201504494

    Article  Google Scholar 

  33. Rit A, Campos J, Niu H, Aldridge S (2016) A stable heavier group 14 analogue of vinylidene. Nat Chem 8:1022–1026. https://doi.org/10.1038/nchem.2597

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsk VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pittsburgh PA, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  35. Parr RG, Yang W (1989) Density functional theory of atom and molecules. Oxford University Press, New York

    Google Scholar 

  36. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atomdispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  Google Scholar 

  37. Scuseria GE, Schaefer III HF (1989) Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration-interaction (QCISD)? J Chem Phys 90:3700–3703. https://doi.org/10.1063/1.455827

    Article  CAS  Google Scholar 

  38. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/ar00072a001 523

    Article  CAS  Google Scholar 

  39. Gonzalez C, Schlegel HB (1991) Improved algorithms for reaction path following: higher-order implicit algorithms. J Chem Phys 95:5853–5860. https://doi.org/10.1063/1.461606

    Article  CAS  Google Scholar 

  40. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  Google Scholar 

  41. Dennington RII, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2009) GaussView v.5.0.9 Visualizer and Builder. Gaussian Inc, Wallingford, CT

  42. Padwa A (1984) 1,3-dipolar cycloaddition chemistry. Wiley, New York

    Google Scholar 

  43. Criegee R (1975) Mechanism of ozonolysis. Angew Chem Int Ed Eng 14:745–752. https://doi.org/10.1002/anie.197507451

    Article  Google Scholar 

  44. Bailey PS, Erickson RE (1961) Diphenaldehyde. Org Synth 41:41–44. https://doi.org/10.15227/orgsyn.041.0041

    Article  CAS  Google Scholar 

  45. Tietze LF, Bratz M (1993) Dialkyl mesoxalates by ozonolysis of dialkyl benzalmalonates. Org Synth 71:214–216. https://doi.org/10.15227/orgsyn.071.0214

    Article  CAS  Google Scholar 

  46. Harwood LM, Moody CJ (1989) Experimental organic chemistry: principles and practice. Blackwell, Hoboken, NJ

  47. Delamerea C, Jakinsa C, Lewars E (2002) Reactions of oxiranylidene and dimethyloxiranylidene, and their generation by retro Diels-Alder-type reactions: a computational study. J Mol Struct Theochem 593:79–91. https://doi.org/10.1016/S0166-1280(02)00144-6

    Article  Google Scholar 

  48. Maier G, Reisenauer HP, Egenolf H (1999) Quest for silaketene: a matrix-spectroscopic and theoretical study. Organometallics 18:2155–2161. https://doi.org/10.1021/om981025y

    Article  CAS  Google Scholar 

  49. Reyes ML, Troadec T, Rodriguez R, Baceiredo A, Saffon-Merceron N, Branchadell V, Kato T (2016) Donor/acceptor-stabilized 1-silaketene: reversible [2+2] cycloaddition with pyridine and evolution by an alefin metathesis reaction. Chem Eur J 22:10247–10253. https://doi.org/10.1002/chem.201601753

    Article  CAS  Google Scholar 

  50. Kudo T, Nagase S (1987) Theoretical search for the silanone-to-silylene isomerization. Organometallics 6:1586–1587. https://doi.org/10.1021/om00150a038

    Article  CAS  Google Scholar 

  51. Cossio FP, Morao I, Jiao H, Schleyer PR (1999) In-plane aromaticity in 1,3-dipolar cycloadditions. Solvent effects, selectivity, and nucleus-independent chemical shifts. J Am Chem Soc 121:6737–6746. https://doi.org/10.1021/ja9831397

    Article  CAS  Google Scholar 

  52. Nguyen LT, Proft FD, Chandra AK, Uchimaru T, Nguyen MT, Geerlings P (2001) Nitrous oxide as a 1,3-dipole: a theoretical study of its cycloaddition mechanism. J Org Chem 66:6096–6103. https://doi.org/10.1021/jo015685f

    Article  CAS  Google Scholar 

  53. Sexton TM, Freindorf M, Kraka E, Cremer D (2016) A reaction valley investigation of the cycloaddition of 1,3-dipoles with the dipolarophiles ethene and acetylene: solution of a mechanistic puzzle. J Phys Chem A 120:8400–8418. https://doi.org/10.1021/acs.jpca.6b07975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Aksaray University coordinator ship of scientific research projects (Grant No. 2017-036) is gratefully acknowledged. The author thanks Prof. Akin Azizoglu for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Burak Yildiz.

Electronic supplementary material

ESM 1

(DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, C.B. Reactivity of silagermenylidene toward nitrous oxide: a preliminary DFT study. J Mol Model 24, 18 (2018). https://doi.org/10.1007/s00894-017-3554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3554-y

Keywords

Navigation