Skip to main content

Advertisement

Log in

Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of −0.82 eV and −0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of −1.52 eV and −1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism.

Acetylene chain reaction on hydrogenated boron nitride monolayers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J (2007) Substrate induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B 76:073103

    Article  Google Scholar 

  2. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotech 5:722–726

    Article  CAS  Google Scholar 

  3. Zou X, Huang C, Wang L, Yin L, Li W, Wang J, Wu B, Liu Y, Yao Q, Jiang C, Wu W, He L, Chen S, Ho JC (2016) Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv Mater 28:2062–2069

    Article  CAS  Google Scholar 

  4. Lee TH, Kim K, Kim G, Park HJ, Scullion D, Shaw L, Kim M, Gu X, Bae W, Santos EJG, Lee Z, Shin HS, Nishi Y, Bao Z (2017) Chemical vapor-deposited hexagonal boron nitride as a scalable template for high-performance organic field-effect transistors. Chem Mater 29:2341–2347

    Article  CAS  Google Scholar 

  5. Li LH, Santos EJG, Xing T, Cappelluti E, Roldan R, Chen Y, Watanabe K, Taniguchi T (2015) Dielectric screening in atomically thin boron nitride nanosheets. Nano Lett 15:218–223

    Article  CAS  Google Scholar 

  6. Lee KH, Shin H, Lee J, Lee I, Kim G, Choi J, Kim S (2012) Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett 12:714–718

    Article  CAS  Google Scholar 

  7. Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1777

    Article  Google Scholar 

  8. Li J, Xiao X, Xu X, Lin J, Huang Y, Xue Y, Jin P, Zou J, Tang C (2013) Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci Rep 3:3208

    Article  Google Scholar 

  9. Jia S, Wang Z, Ding N, Wong Y-LE, Chen X, Qiu G, Chan T-WD (2016) Hexagonal boron nitride nanosheets as adsorbents for extraction of polychlorinated biphenyls from water samples. Anal Chim Acta 936:123–129

    Article  CAS  Google Scholar 

  10. Khan MH, Jamali SS, Lyalin A, Molino PJ, Liang L, Liu HK, Taketsugu T, Huang Z (2017) Atomically thin hexagonal boron nitride nanofilm for cu protection: the importance of film perfection. Adv Mater 29:1603937

    Article  Google Scholar 

  11. Zhang J, Yang Y, Lou J (2016) Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution. Nanotechnology 27:364004

    Article  Google Scholar 

  12. Lipp A, Schwetz A, Hunold K (1989) Hexagonal boron nitride: fabrication, properties and applications. J Eur Ceram Soc 5:3–9

    Article  CAS  Google Scholar 

  13. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  CAS  Google Scholar 

  14. Lin S, Ye X, Johnson RS, Guo H (2013) First-principles investigations of metal (cu, ag, au, Pt, Rh, Pd, Fe, co, and Ir) doped hexagonal boron nitride Nanosheets: stability and catalysis of CO oxidation. J Phys Chem C 117:17319–17326

    Article  CAS  Google Scholar 

  15. Tang S, Cao Z (2010) Structural and electronic properties of the fully hydrogenated boron nitride sheets and nanoribbons: insight from first-principles calculations. Chem. Phys. Lett 488:67–72

    Article  CAS  Google Scholar 

  16. Ponce-Pérez R, Cocoletzi GH (2017) Hydrogenated boron nitride monolayer functionalization: a density functional theory study. Comp Theor Chem 1111:33–39

    Article  Google Scholar 

  17. Castro-Medina J, Garcia-Total D, Lopez-Fuentes M, Sanchez-Castillo A, Torres-Morales S, Morales de la Garza L, Cocoletzi GH (2017) Thymine adsorption on two-dimensional boron nitride structures: first-principles studies. J Mol Model 23:109

    Article  CAS  Google Scholar 

  18. Hernandez JMG, Cocoletzi GH, Anota EC (2012) DFT studies of the phenol adsorption on boron nitride sheets. J Mol Model 18:137–144

    Article  Google Scholar 

  19. Ponce-Pérez R, Cocoletzi GH, Takeuchi N (2016) Two-dimensional boron nitride structures functionalization: first principles studies. J Mol Model 22:226

    Article  Google Scholar 

  20. Rubioz.Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys 138:194702

    Article  Google Scholar 

  21. Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated graphene. J. of Phys. Chem. C 117:18738–18745

    Article  CAS  Google Scholar 

  22. Rubio.Pereda P, Takeuchi N (2015) Adsorption of organic molecules on the hydrogenated germanene: a DFT study. J Phys Chem C 119:27995–28004

    Article  CAS  Google Scholar 

  23. Giannozzi P et al (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  24. Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  25. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 76:125112

    Article  Google Scholar 

  26. Roman-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102

    Article  Google Scholar 

  27. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 11:7892

    Article  Google Scholar 

  28. Perdew JP, Burke S, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  29. Methfessel M, Paxton AT (1989) High precision sampling for Brillouin-zone integrations in metals. Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  31. Henkelman G, Uberuaga BP, Jonsson H (2000) A climb image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  32. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudge elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  33. Jiang DE, Carter EA (2004) Adsorption, diffusion, and dissociation of H2S on Fe(100) from first principles. J Phys Chem B 108:19140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.H.C. acknowledges the financial support of VIEP-BUAP grant HECG-EXC16-1, CONACYT project ##223180, and Cuerpo Académico Física Computacional de la Materia Condensada (BUAP-CA-194). N.T. thanks CONACYT Project 281052 and DGAPA-UNAM project IN100516 for partial financial support. Calculations were performed in the DGTIC-UNAM supercomputing center, project LANCAD-UNAM-DGTIC-051, Instituto de Física BUAP and LNS-BUAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ponce-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponce-Pérez, R., Cocoletzi, G.H. & Takeuchi, N. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study. J Mol Model 23, 359 (2017). https://doi.org/10.1007/s00894-017-3536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3536-0

Keywords

Navigation