Skip to main content
Log in

Theoretical investigation on the covalence in AgRnX and XAgRn (X = F – I)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

CCSD(T) calculations were performed to investigate the stabilities and interaction mechanisms of the AgRnX and XAgRn (X = F – I) series. Dissociation energies and frontier orbital properties demonstrate an increased trend of stabilities. Ag spd hybrids and Rn/X sp hybrids come into the σAg-Rn and σAg-X bonding orbital. The nature of Ag-Rn, Ag-X and Rn-X interactions were investigated by atoms in molecules (AIM) theory. The negative energy density and positive Laplacian values, as well as small electron densities at bond critical points (BCPs), characterize the moderate strength with partial covalence of interactions. BCP properties (−G/V and G/ρ), electron density deformations and natural resonance theory (NRT) results display increased covalence down the periodic table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans CJ, Gerry MCL (2000) J Chem Phys 112:1321

    Article  CAS  Google Scholar 

  2. Evans CJ, Gerry MCL (2000) J Chem Phys 112:9363

    Article  CAS  Google Scholar 

  3. Evans CJ, Lesarri A, Gerry MCL (2000) J Am Chem Soc 122:6100

    Article  CAS  Google Scholar 

  4. Evans CJ, Rubino DS, Gerry MCL (2000) Phys Chem Chem Phys 2:3943

    Article  CAS  Google Scholar 

  5. Reynard LM, Evans CJ, Gerry MCL (2001) J Mol Spectrosc 206:33

    Article  CAS  Google Scholar 

  6. Walker NR, Reynard LM, Gerry MCL (2002) J Mol Struct 612:109

    Article  CAS  Google Scholar 

  7. Cooke SA, Gerry MCL (2004) J Am Chem Soc 126:17000

    Article  CAS  Google Scholar 

  8. Cooke SA, Gerry MCL (2004) Phys Chem Chem Phys 6:3248

    Article  CAS  Google Scholar 

  9. Thomas JM, Walker NR, Cooke SA, Gerry MCL (2004) J Am Chem Soc 126:1235

    Article  CAS  Google Scholar 

  10. Michaud JM, Cooke SA, Gerry MCL (2004) Inorg Chem 43:3871

    Article  CAS  Google Scholar 

  11. Michaud JM, Gerry MCL (2006) J Am Chem Soc 128:7613

    Article  CAS  Google Scholar 

  12. Pyykkö P (1995) J Am Chem Soc 117:2067

    Article  Google Scholar 

  13. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37:624

    Article  Google Scholar 

  14. Read JP, Buckingham AD (1997) J Am Chem Soc 119:9010

    Article  CAS  Google Scholar 

  15. Bellert D, Breckenridge WH (2002) Chem Rev 102:1595

    Article  CAS  Google Scholar 

  16. Wang Q, Sun Q, Jena P (2009) J Chem Phys 131:124301

    Article  CAS  Google Scholar 

  17. Koirala P, Willis M, Kiran B, Kandalam AK, Jena P (2010) J Phys Chem C 114:16018

    Article  CAS  Google Scholar 

  18. Rabilloud F (2012) J Phys Chem A 116:3474

    Article  CAS  Google Scholar 

  19. Rabilloud F (2012) J Comput Chem 33:2083

    Article  CAS  Google Scholar 

  20. Liu Y, Tian Z, Cheng L (2016) RSC Adv 6:4705

    Article  CAS  Google Scholar 

  21. Tian Z, Cheng L (2015) Phys Chem Chem Phys 17:13421

    Article  CAS  Google Scholar 

  22. Wang LS (2010) Phys Chem Chem Phys 12:8694

    Article  CAS  Google Scholar 

  23. Makarewicz E, Gordon AJ, Bersji S (2015) J Phys Chem A 119:2401

    Article  CAS  Google Scholar 

  24. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  25. Wahlström E, Miljörisker (1994) Schildts, Helsinki, p105

  26. Murray JS, Politzer P (2011) Wiley Interdiscip 1:153

    CAS  Google Scholar 

  27. Peterson KA, Puzzarini C (2005) Theor Chem Accounts 114:283

    Article  CAS  Google Scholar 

  28. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  29. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  30. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gausian 03. Gaussian Inc., Pittsburgh

    Google Scholar 

  32. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  33. Xinying L, Zhen-duo G (2015) J Mol Model 21:205

    Article  Google Scholar 

  34. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

  36. Glendening ED, Weinhold F (1998) J Comput Chem 19:593

    Article  CAS  Google Scholar 

  37. Glendening ED, Weinhold F (1998) J Comput Chem 19:610

    Article  CAS  Google Scholar 

  38. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, Universityof Wisconsin, Madison. http://nbo6.chem.wisc.edu/

  39. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  41. Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627

    Article  Google Scholar 

  42. Nakanishi W, Hayashi S, Narahara K (2008) J Phys Chem A 112:13593

    Article  CAS  Google Scholar 

  43. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Supports from National Natural Science Foundation of China (No. U1404210) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xinying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinying, L. Theoretical investigation on the covalence in AgRnX and XAgRn (X = F – I). J Mol Model 23, 350 (2017). https://doi.org/10.1007/s00894-017-3524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3524-4

Keywords

Navigation