Skip to main content
Log in

Electronic structure and bonding of the dinuclear metal M2(CO)10 decacarbonyls: applications of natural orbitals for chemical valence

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature of the chemical metal–metal bond in M2(CO)10 (M = Mn, Re, Tc) dinuclear decacarbonyls complexes was investigated for the first time using the natural orbital chemical valence (NOCV) approach combined with the extended transition state (ETS) for energy decomposition analysis (EDA). The optimized geometries carried out at different levels of theory BP86, BLYP, BLYPD and BP86D, showed that the latter method, i.e., BP86D, led to the best agreement with X-ray experimental measurements. The BP86D/TZP results revealed that the computed covalent contribution to the metal–metal bond are 60.5%, 54.1% and 52.0% for Mn–Mn, Re–Re and Tc–Tc, respectively. The computed total interaction energies resulting from attractive terms (ΔE orb and ΔE eles), correspond well to experimental predictions, based on bond lengths and energy interaction analysis for the studied complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dahl LF, Ishishi E, Rundle RE (1957) Polynuclear metal carbonyls. I. Structures of Mn2(CO)10 and Re2(CO)10. J Chem Phys 26:1750–1751. https://doi.org/10.1063/1.1743615

    Article  CAS  Google Scholar 

  2. Wallach D (1962) Unit cell and space group of technetium carbonyl, Tc2(CO)10. Acta Crystallogr 15:1058. https://doi.org/10.1107/S0365110X62002789

    Article  CAS  Google Scholar 

  3. Nguyen T, Sutton AD, Brynda M et al (2005) Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310:844–847. https://doi.org/10.1126/science.1116789

    Article  CAS  Google Scholar 

  4. Hsu C-W, Yu J-SK, Yen C-H et al (2008) Quintuply-bonded Dichromium(I) complexes featuring metal–metal bond lengths of 1.74 Å. Angew Chem 120:10081–10084. https://doi.org/10.1002/ange.200803859

    Article  Google Scholar 

  5. Kreisel KA, Yap GPA, Dmitrenko O et al (2007) The shortest metal−metal bond yet: molecular and electronic structure of a dinuclear chromium diazadiene complex. J Am Chem Soc 129:14162–14163. https://doi.org/10.1021/ja076356t

    Article  CAS  Google Scholar 

  6. Wagner FR, Noor A, Kempe R (2009) Ultrashort metal–metal distances and extreme bond orders. Nat Chem 1:529–536. https://doi.org/10.1038/nchem.359

    Article  CAS  Google Scholar 

  7. Ghoulami A, Ashrafi AR (2008) Symmetry of dimanganese decacarbonyl with D4d point group. Indian J Chem A 47:225

    Google Scholar 

  8. Li WK, Zhou GD, Mak T (2008) Metal–metal bonds and transition-metal clusters. In: Li WK, Zhou GD, Mak T (eds) Advanced structural inorganic chemistry. Oxford University Press, Oxford.

  9. Georgiev VP, Mohan PJ, DeBrincat D, McGrady JE (2013). Coord Chem Rev 257:290

    Article  CAS  Google Scholar 

  10. Doyle MP, Duffy R, Ratnikov M, Zhou L (2010). Chem Rev 110:704

    Article  CAS  Google Scholar 

  11. Davies HML, Denton JR (2009). Chem Soc Rev 38:3061

    Article  CAS  Google Scholar 

  12. Kampa M, Pandelia ME, Lubitz W, van Gastel M, Neese F (2013). J Am Chem Soc 135:3915

    Article  CAS  Google Scholar 

  13. Missner K, Korol'kov DV (1972) Electronic structure of the binuclear carbonyls Mn2(CO)10, Tc2(CO)10, and Re2(CO)10. J Struct Chem 13:639–647. https://doi.org/10.1007/bf00739507

    Article  Google Scholar 

  14. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms. Springer, New York

  15. Liddle ST (2015) Molecular metal-metal bonds: compounds, synthesis, properties, 1st edn. Wiley-VCH, Weinheim

  16. Schultz NE, Zhao Y, Truhlar DG (2005) Density functionals for inorganometallic and organometallic chemistry. J Phys Chem A 109:11127–11143. https://doi.org/10.1021/jp0539223

    Article  CAS  Google Scholar 

  17. Cukrowski I, de Lange JH, Mitoraj M (2014) Physical nature of interactions in ZnII complexes with 2,2′-Bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies. J Phys Chem A 118:623–637. https://doi.org/10.1021/jp410744x

  18. Bader RF (1990) Atoms in molecules: a quantum theory, vol 22, international series of monographs on chemistry. Oxford Science, Oxford

    Google Scholar 

  19. Bader RFW, MacDougall PJ, Lau CDH (1984) Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity. J Am Chem Soc 106:1594–1605. https://doi.org/10.1021/ja00318a009

    Article  CAS  Google Scholar 

  20. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323. https://doi.org/10.1021/jp981794v

    Article  CAS  Google Scholar 

  21. Maelen JF, Cabeza JA (2016) A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, re). Theor Chem Accounts 135:1–11. https://doi.org/10.1007/s00214-016-1821-0

    Article  Google Scholar 

  22. Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2(CO)10: metal−metal and metal−Ligand bond characterization. Inorg Chem 39:2360–2366. https://doi.org/10.1021/ic991316e

    Article  CAS  Google Scholar 

  23. Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109. https://doi.org/10.1021/ct0501093

    Article  CAS  Google Scholar 

  24. Pendás AM, Blanco MA, Francisco E (2007) Chemical fragments in real space: definitions, properties, and energetic decompositions. J Comput Chem 28:161–184. https://doi.org/10.1002/jcc.20469

    Article  Google Scholar 

  25. Francisco E, Martín Pendás A, Blanco MA (2006) A molecular energy decomposition scheme for atoms in molecules. J Chem Theory Comput 2:90–102. https://doi.org/10.1021/ct0502209

    Article  CAS  Google Scholar 

  26. Gillet N, Chaudret R, Contreras-García J et al (2012) Coupling quantum interpretative techniques: another look at chemical mechanisms in organic reactions. J Chem Theory Comput 8:3993–3997. https://doi.org/10.1021/ct300234g

    Article  CAS  Google Scholar 

  27. Contreras-García J, Johnson ER, Keinan S et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  Google Scholar 

  28. Johnson ER, Keinan S, Mori-Sánchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  Google Scholar 

  29. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree-Fock Slater method. Theor Chim Acta 46:1–10. https://doi.org/10.1007/bf00551648

  30. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975. https://doi.org/10.1021/ct800503d

    Article  CAS  Google Scholar 

  31. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13:347–355. https://doi.org/10.1007/s00894-006-0149-4

    Article  CAS  Google Scholar 

  32. Mitoraj MP, Parafiniuk M, Srebro M et al (2011) Applications of the ETS-NOCV method in descriptions of chemical reactions. J Mol Model 17:2337–2352. https://doi.org/10.1007/s00894-011-1023-6

    Article  CAS  Google Scholar 

  33. Mitoraj MP, Michalak A, Ziegler T (2009) On the nature of the Agostic bond between metal Centers and β-hydrogen atoms in alkyl complexes. An analysis based on the extended transition state method and the natural Orbitals for chemical valence scheme (ETS-NOCV). Organometallics 28:3727–3733. https://doi.org/10.1021/om900203m

    Article  CAS  Google Scholar 

  34. Mitoraj MP, Michalak A (2012) Theoretical description of halogen bonding—an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV). J Mol Model 19:4681–4688. https://doi.org/10.1007/s00894-012-1474-4

    Article  Google Scholar 

  35. Dyduch K, Mitoraj MP, Michalak A (2012) ETS-NOCV description of σ-hole bonding. J Mol Model 19:2747–2758. https://doi.org/10.1007/s00894-012-1591-0

    Article  Google Scholar 

  36. Kan Y-H (2009) Covalent or not? Energy decomposition analysis of metal–metal bonding in alkaline-earth dimetallocene complexes. J Mol Struct THEOCHEM 894:88–92. https://doi.org/10.1016/j.theochem.2008.10.004

    Article  CAS  Google Scholar 

  37. Pandey KK (2007) Structure and energy decomposition analysis of metal–metal bonding in [PhM–MPh] and [ClM–MCl] (M = Zn, Cd, hg). J Mol Struct THEOCHEM 823:59–64. https://doi.org/10.1016/j.theochem.2007.08.013

    Article  CAS  Google Scholar 

  38. Pandey KK (2007) Energy analysis of metal–metal bonding in [RM–MR] (M = Zn, Cd, hg; R = CH3, SiH3, GeH3, C5H5, C5Me5). J Organomet Chem 692:1058–1063. https://doi.org/10.1016/j.jorganchem.2006.10.067

    Article  CAS  Google Scholar 

  39. Kan Y (2007) The nature of metal–metal bond of the dimetallocene complexes [M2(η5-C5R5)2] (M = Zn, Cd, hg; R = H, me): an energy decomposition analysis. J Mol Struct THEOCHEM 805:127–132. https://doi.org/10.1016/j.theochem.2006.11.007

    Article  CAS  Google Scholar 

  40. Mitoraj M, Michalak A (2007) Donor–acceptor properties of Ligands from the natural orbitals for chemical valence. Organometallics 26:6576–6580. https://doi.org/10.1021/om700754n

    Article  CAS  Google Scholar 

  41. Mitoraj M, Michalak A (2008) Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J Mol Model 14:681–687. https://doi.org/10.1007/s00894-008-0276-1

    Article  CAS  Google Scholar 

  42. Mitoraj MP, Kurczab R, Boczar M et al (2010) Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV). J Mol Model 16:1789–1795. https://doi.org/10.1007/s00894-010-0740-6

    Article  CAS  Google Scholar 

  43. Mitoraj MP (2011) Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV). J Phys Chem A 115:14708–14716. https://doi.org/10.1021/jp209712s

    Article  CAS  Google Scholar 

  44. ADF2014.07, SCM; Theoretical Chemistry. Vrije University, Amsterdam, The Netherlands. http://www.scm.com

  45. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391

    CAS  Google Scholar 

  46. te Velde G, Bickelhaupt FM, van Gisbergen SJA, Guerra CF, Baerends EJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931

    Article  Google Scholar 

  47. Becke AD (1986) Completely numerical calculations on diatomic molecules in the local-density approxi tion. Phys Rev A 33:2786–2788

    Article  CAS  Google Scholar 

  48. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  49. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  50. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967. https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  51. Chang C, Pelissier M, Durand P (1986) Regular 2-component pauli-like effective-hamiltonians in dirac theory. Phys Scr 34:394–404. https://doi.org/10.1088/0031-8949/34/5/007

    Article  CAS  Google Scholar 

  52. Van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156. https://doi.org/10.1002/jcc.10255

    Article  Google Scholar 

  53. Gorelsky SI (2010) AOMix program for molecular orbital analysis. University of Ottawa, Canada

  54. ADF-GUI, Amsterdam, The Netherlands. http://www.scm.com

  55. Ziegler T, Rauk A (1979) Theoretical-study of the ethylene-metal bond in complexes between cu+, Ag+, au+, pt-0, or pt-2+ and ethylene, based on the hartree-fock-slater transition-state method. Inorg Chem 18:1558–1565. https://doi.org/10.1021/ic50196a034

    Article  CAS  Google Scholar 

  56. Nalewajski RF, Formosinho SJ, Varandas AJC, Mrozek J (1994) Quantum mechanical valence study of a bond-breaking–bond-forming process in triatomic systems. Int J Quantum Chem 52:1153–1176. https://doi.org/10.1002/qua.560520504

    Article  CAS  Google Scholar 

  57. Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51:187–200. https://doi.org/10.1002/qua.560510403

    Article  CAS  Google Scholar 

  58. Nalewajski RF, Mrozek J (1996) Hartree-Fock difference approach to chemical valence: three-electron indices in UHF approximation. Int J Quantum Chem 57:377–389. https://doi.org/10.1002/(sici)1097-461x

    Article  CAS  Google Scholar 

  59. Nalewajski RF, Mrozek J, Mazur G (1996) Quantum chemical valence indices from the one-determinantal difference approach. Can J Chem 74:1121–1130. https://doi.org/10.1139/v96-126

    Article  CAS  Google Scholar 

  60. Nalewajski RF, Mrozek J, Michalak A (1997) Two-electron valence indices from the Kohn-Sham orbitals. Int J Quantum Chem 61:589–601. https://doi.org/10.1002/(sici)1097-461x

    Article  CAS  Google Scholar 

  61. Michalak A, DeKock RL, Ziegler T (2008) Bond multiplicity in transition-metal complexes: applications of two-electron valence indices. J Phys Chem A 112:7256–7263. https://doi.org/10.1021/jp800139g

    Article  CAS  Google Scholar 

  62. Nalewajski RF, Michalak A (1998) Exploring bonding patterns of molecular systems using quantum mechanical bond multiplicities. Pol J Chem 72:1779–1791

    Google Scholar 

  63. Michalak A, Mitoraj M, Ziegler T (2008) Bond orbitals from chemical valence theory. J Phys Chem A 112:1933–1939. https://doi.org/10.1021/jp075460u

    Article  CAS  Google Scholar 

  64. Broclawik E, Załucka J, Kozyra P et al (2011) Formaldehyde activation by cu(I) and Ag(I) sites in ZSM-5: ETS-NOCV analysis of charge transfer processes. Catal Today 169:45–51. https://doi.org/10.1016/j.cattod.2010.08.020

    Article  CAS  Google Scholar 

  65. Xu B, Li Q-S, Xie Y et al (2008) Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures. Dalton Trans 14:2495–2502. https://doi.org/10.1039/b715211f

    Article  Google Scholar 

  66. Gapotchenko NI, Struchkov YT, Alekseev NV et al (1973) Electron-diffraction investigation of the structure of the dirhenium decacarbonyl molecule in the gas phase. J Struct Chem 14:383–387. doi:https://doi.org/10.1007/bf00746985

Download references

Acknowledgments

The authors are grateful to Pr. Agustí Lledós, Pr. Gregori Ujaque, Dr. Manuel A. Ortuno, and all the members of their group for their valuable help during the internship at the Autonomous University of Barcelona, and to Kaouther Boudjemaa for her technical assistance. The financial support of the Mentouri University of Constantine is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Belkhiri.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menacer, R., May, A., Belkhiri, L. et al. Electronic structure and bonding of the dinuclear metal M2(CO)10 decacarbonyls: applications of natural orbitals for chemical valence. J Mol Model 23, 358 (2017). https://doi.org/10.1007/s00894-017-3523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3523-5

Keywords

Navigation