Skip to main content
Log in

Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23–3.96 eV) than the RGN (0.13–2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol−1. The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH2) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH).

HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based Nanoelectronics. J Phys Chem B 108:19912–19916

    Article  CAS  Google Scholar 

  3. Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9:422–426

    Article  CAS  Google Scholar 

  4. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  5. Zhang L, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  6. Ghosh S, An X, Shah R, Rawat D, Dave B, Kar S, Talapatra S (2012) Effect of 1-pyrene carboxylic-acid functionalization of graphene on its capacitive energy storage. J Phys Chem C 116:20688–20693

    Article  CAS  Google Scholar 

  7. Mohammed M, Li Z, Cui J, Chen TP (2012) Junction investigation of graphene/silicon Schottky diodes, nanoscale. Res Lett 7:302–307

    Google Scholar 

  8. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B 76:033401–033404

    Article  Google Scholar 

  9. Lee J-H, Choi Y-K, Kim H-J, Scheicher RH, Cho JH (2013) Physisorption of DNA nucleobases on H-BN and graphene: Vdw-corrected DFT calculations. J Phys Chem C 117:13435–13441

    Article  CAS  Google Scholar 

  10. Cortés-Arriagada D, Sanhueza L, Santander-Nelli M (2013) Modeling the physisorption of bisphenol a on graphene and graphene oxide. J Mol Model 19:3569–3580

    Article  Google Scholar 

  11. Duy L, Abdelkader K, Elsebeth S, Per H, Talat SR (2012) Physisorption of nucleobases on graphene: a comparative van der Waals study. J Phys Condens Matter 24:424210

    Article  Google Scholar 

  12. Martins TB, Miwa RH, da Silva AJR, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98:196803–196806

    Article  CAS  Google Scholar 

  13. Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, Guo J, Dai HJ (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  CAS  Google Scholar 

  14. Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  15. Panchokarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726–4730

    Google Scholar 

  16. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  17. Choi J, Kim KJ, Kim B, Lee H, Kim S (2009) Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J Phys Chem C 113:9433–9435

    Article  CAS  Google Scholar 

  18. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for Graphane. Science 323:610–613

    Article  CAS  Google Scholar 

  19. Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekaer L (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater 9:315–319

    Article  CAS  Google Scholar 

  20. Choi J, Lee H, Kim KJ, Kim B, Kim S (2010) Chemical doping of epitaxial graphene by organic free radicals. J Phys Chem Lett 1:505–509

    Article  CAS  Google Scholar 

  21. Chen W, Chen S, Qi DC, Gao XY, Wee ATS (2007) Surface transfer p-type doping of epitaxial graphene. J Am Chem Soc 129:10418–10422

    Article  CAS  Google Scholar 

  22. Voggu R, Das B, Rout CS, Rao CNR (2008) Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys Condens Matter 20:472204–472208

    Article  Google Scholar 

  23. Grimme S (2008) Do special noncovalent pi-pi stacking interactions really exist? Angew Chem 47:3430–3434

    Article  CAS  Google Scholar 

  24. Dong XC, Fu DL, Fang WJ, Shi YM, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5:1422–1426

    Article  CAS  Google Scholar 

  25. Zhang YH, Zhou KG, Xie KF, Zeng J, Zhang HL, Peng Y (2010) Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms. Nanotechnology 21:065201–065207

    Article  Google Scholar 

  26. Zhang ZX, Huang HL, Yang XM, Zang L (2011) Tailoring electronic properties of graphene by pi-pi stacking with aromatic molecules. J Phys Chem Lett 2:2897–2905

    Article  CAS  Google Scholar 

  27. Wang WZ, Sun T, Zhang Y, Wang YB (2014) Substituent effects in the pi...pi interaction between graphene and benzene: an indication for the noncovalent functionalization of graphene. Comput Theor Chem 1046:64–69

    Article  CAS  Google Scholar 

  28. Wang WZ, Sun T, Zhang Y, Wang YB (2015) Benchmark calculations of the adsorption of aromatic molecules on graphene. J Comput Chem 36:1763–1771

    Article  CAS  Google Scholar 

  29. Yin YF, Cervenka J, Medhekar NV (2015) Tunable hybridization between electronic states of graphene and physisorbed hexacene. J Phys Chem C 119:19526–19534

    Article  CAS  Google Scholar 

  30. Lee J, Hwang E, Lee E, Seo S, Lee H (2012) Tuning of n- and p-type reduced graphene oxide transistors with the same molecular backbone. Chem Eur J 18:5155–5159

    Article  CAS  Google Scholar 

  31. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  32. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730

    Article  CAS  Google Scholar 

  33. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  34. An XH, Simmons TJ, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301

    Article  CAS  Google Scholar 

  35. Babu P, Sangeetha NM, Vijaykumar P, Maitra U, Rissanen K, Raju AR (2003) Pyrene-derived novel one- and two-component organogelators. Chem Eur J 9:1922–1932

    Article  CAS  Google Scholar 

  36. Soustek P, Michl M, Almonasy N, Machahcky O, Dvorak M, Lycka A (2008) The synthesis and fluorescence of N-substituted 1- and 2-aminopyrenes. Dyes Pigments 78:139–147

    Article  CAS  Google Scholar 

  37. Deng JP, Chen WH, Chiu SP, Lin CH, Wang BC (2014) Edge-termination and core-modification effects of hexagonal Nanosheet graphene. Molecules 19:2361–2373

    Article  Google Scholar 

  38. Zhou PP, Zhang RQ (2015) Physisorption of benzene derivatives on graphene: critical roles of steric and stereoelectronic effects of the substituent. Phys Chem Chem Phys 17:12185–12193

    Article  CAS  Google Scholar 

  39. Li H, Zou L, Pan L, Sun Z (2010) Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Sep Purif Technol 75:8–14

    Article  CAS  Google Scholar 

  40. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  Google Scholar 

  41. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  42. Molitor F, Güttinger J, Stampfer C, Dröscher S, Jacobsen A, Ihn T, Ensslin K (2011) Electronic properties of graphene nanostructures. J Phys Condens Matter 23:243201–243215

    Article  CAS  Google Scholar 

  43. Tapas S, Das I, Banerjee S (2009) Contribution of energy-gap in the ferromagnetic spin–wave spectrum on magnetocaloric parameters of Ceru 2 Ge 2. J Phys Condens Matter 21:026010

    Article  Google Scholar 

  44. Neubeck S, Ponomarenko LA, Freitag F, Giesbers AJM, Zeitler U, Morozov SV, Blake P, Geim AK, Novoselov KS (2010) From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6:1469–1473

    Article  CAS  Google Scholar 

  45. Datta SS, Strachan DR, Khamis SM, Johnson ATC (2008) Crystallographic etching of few-layer graphene. Nano Lett 8:1912–1915

    Article  CAS  Google Scholar 

  46. Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res. 1:116–122

    Article  CAS  Google Scholar 

  47. Ci L, Song L, Jariwala D, Elías AL, Gao W, Terrones M, Ajayan PM (2009) Graphene shape control by multistage cutting and transfer. Adv Mater 21:4487–4491

    Article  CAS  Google Scholar 

  48. Campos LC, Manfrinato VR, Sanchez-Yamagishi JD, Kong J, Jarillo-Herrero P (2009) Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett 9:2600–2604

    Article  CAS  Google Scholar 

  49. Nagai H, Nakano M, Yoneda K, Fukui H, Minami T, Bonness S, Kishi R, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2009) Theoretical study on third-order nonlinear optical properties in hexagonal graphene nanoflakes: edge shape effect. Chem Phys Lett 477:355–359

    Article  CAS  Google Scholar 

  50. Shakourian-Fard M, Kamath G (2017) The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids. Phys Chem Chem Phys 19:4383–4395

    Article  CAS  Google Scholar 

  51. Chutia A, Sahnoun R, Deka RC, Zhu Z, Tsuboi H, Takaba H, Miyamoto A (2011) Local electronic and electrical properties of functionalized graphene nanoflakes. PhyB 406:1665–1672

    CAS  Google Scholar 

  52. Parr RG (1982) Density functional theory. In: Electron distributions and the chemical bond. Springer, Boston, pp 95–100

  53. Paier J, Hirschl R, Marsman M, Kresse G (2005) The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J Chem Phys 122:234102–234114

    Article  Google Scholar 

  54. Woon DE, Dunning Jr TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  55. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al. (2009) Gaussian 09, revision a.02. Gaussian Inc., Wallingford, p 200

    Google Scholar 

  56. Zhao Y, Truhlar DG (2008) The M06 suite of density Functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  57. Rungnim C, Chanajaree R, Rungrotmongkol T, Hannongbua S, Kungwan N, Wolschann P, Karpfen A, Parasuk V (2016) How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster? J Mol Model 22:85–93

    Article  Google Scholar 

  58. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  59. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie, Berlin

  60. Crowley JM, Tahir-Kheli J, Goddard WA (2016) Resolution of the band gap prediction problem for materials design. J Phys Chem Lett 7:1198–1203

    Article  CAS  Google Scholar 

  61. Colherinhas G, Fileti EE, Chaban VV (2015) Can inorganic salts tune electronic properties of graphene quantum dots? Phys Chem Chem Phys 17:17413–17420

    Article  CAS  Google Scholar 

  62. Hunter CA (1993) Arene—arene interactions: electrostatic or charge transfer? Angew Chem 32:1584–1586

    Article  Google Scholar 

  63. Hunter CA, Sanders JKM (1990) The nature of pi-pi interactions. J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  64. Lüssem B, Riede M, Leo K (2013) Doping of organic semiconductors. Phys Status Solidi A 210:9–43

    Article  Google Scholar 

  65. Salzmann I, Heimel G (2015) Toward a comprehensive understanding of molecular doping organic semiconductors (review). J Electron Spectrosc 204:208–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the 90th anniversary of Chulalongkorn University for Mr.Thanawit Kuamit’s scholarship and Ratchadapisek Somphot Endownment Fund of Chulalongkorn University RES560530184-AM and CU-57-038-AM (Advanced Material Cluster) and the world class university grant of the comission for higher education WCU-031-AM-57 for funding this work. Additionally, the Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Chulalonkorn University and the National Electronics and Computer Technology Center (NECTEC) under the National e-Science Consortium are gratefully acknowledged for their support in computing facilities.

This work is devoted to the remembrance of His Majesty King Bhumibol Adulyadej (1927-2016), for his life-time dedication to Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vudhichai Parasuk.

Electronic supplementary material

ESM 1

(DOCX 337 kb)

ESM 2

(DOCX 809 kb)

ESM 3

(DOCX 623 kb)

ESM 4

(DOCX 97.2 kb)

ESM 5

(DOCX 95.0 kb)

ESM 6

(DOCX 340 kb)

ESM 7

(DOCX 79.7 kb)

ESM 8

(DOCX 299 kb)

ESM 9

(DOCX 74.5 kb)

ESM 10

(DOCX 78.8 kb)

ESM 11

(DOCX 104 kb)

ESM 12

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuamit, T., Ratanasak, M., Rungnim, C. et al. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes. J Mol Model 23, 355 (2017). https://doi.org/10.1007/s00894-017-3521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3521-7

Keywords

Navigation