Advertisement

Journal of Molecular Modeling

, 23:363 | Cite as

Spin states of Mn(III) meso-tetraphenylporphyrin chloride assessed by density functional methods

  • Higo de Lima Bezerra Cavalcanti
  • Gerd Bruno RochaEmail author
Original Paper

Abstract

The present work assessed several exchange-correlation functionals (including GGA, meta-GGA and hybrid functionals), in combination with a variety of basis sets and effective core potentials (ECP) for their ability to predict the ground spin state of Mn(III) meso-tetraphenylporphyrin chloride complex, labeled Mn(III)TPPCl, for which experimental data support the quintet high spin state. Geometry optimization of Mn(III)TPPCl was performed for three possible spin states (singlet state, LS; triplet state, IS; and quintet state, HS) at the TPSSh level using the LANL2DZ ECP for Mn and the 6-311G(d) basis set for C, N, Cl and H. Afterwards, single-point energy calculations were conducted by applying 18 exchange-correlation functionals (BLYP, B3LYP, PW91, BPW91, BP86, OLYP, OPBE, OPW91, O3LYP, PBE0, PBEh1PBE, HSEH1PBE, TPSS, TPSSh, M06 L, M06, M062X and M06HF). The influence of the basis set for the metal center was assessed using a smaller group of functionals and varying between the Pople basis set 6-31G(d), its newer formulation m6-31G(d) and the larger Def2-QZVP basis set. All functionals in combination with Pople basis sets predict the quintet state as the ground spin state. In addition, the BLYP, BP86, BPW91, PW91, PBEh1PBE, TPSS and TPSSh functionals predicted the IS lying at most ~60 kJ mol−1 above the HS, which agrees with the reference data. Results including Def2-QZVP basis set were inconsistent, since only BLYP and B3LYP predict HS as the ground spin state. The recommended methodology for the treatment of such systems seems to be exchange-correlations functionals with few or none Hartree-Fock exchange and modest size basis sets.

Graphical Abstract

MnTPPCl molecule and the energy ordering of its spin states assessed by 18 functionals

Keywords

DFT Mn porphyrins Metalloporphyrins Spin state 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Brazilian agencies, institutes and networks: Instituto Nacional de Ciência e Tecnologia de Nanotecnologia para Marcadores Integrados (INCT-INAMI), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Programa de Apoio a Núcleos de Excelência (PRONEX-FACEPE) and Financiadora de Estudos e Projetos (FINEP). The authors also acknowledge the physical structure and computational support provided by Universidade Federal da Paraíba (UFPB) and Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB) and the computer resources of Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP).

Supplementary material

894_2017_3515_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. 1.
    Bhyrappa P, Krishnan V (1991) Octabromotetraphenylporphyrin and its metal derivatives: electronic structure and electrochemical properties. Inorg Chem.  https://doi.org/10.1021/ic00002a018
  2. 2.
    Bhyrappa P, Purushothaman B, Vittal JJ (2003) Highly brominated porphyrins: synthesis, structure, and their properties. J Porphyrins Phthalocyanines.  https://doi.org/10.1142/S1088424603000859
  3. 3.
    Ellis PEJR, Lyons JE (1990) Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins - the search for a suprabiotic system. Coord Chem Rev.  https://doi.org/10.1016/0010-8545(90)80022-L
  4. 4.
    D’ Souza F, Hsieh YY, Deviprasad GR (1997) Electrocatalytic reduction of molecular-oxygen using nonplanar cobalt Tetrakis-(4-Sulfonatophenyl)-Beta-Octabromoporphyrin. J Electroanal Chem.  https://doi.org/10.1016/S0022-0728(97)00040-5
  5. 5.
    Batinic-Haberle I, Liochev SI, Spasojevic I, Fridovich I (1997) A potent superoxide dismutase mimic: manganese β-Octabromo-meso-tetrakis-(N-methylpyridinium- 4-yl) Porphyrin. Arch Biochem Biophys.  https://doi.org/10.1006/abbi.1997.0157
  6. 6.
    Bailey SL, Hambright P (2003) Kinetics of the reactions of divalent copper, zinc, cobalt, and nickel with a deformed water soluble centrally monoprotic porphyrin. Inorg Chim Acta.  https://doi.org/10.1016/S0020-1693(02)01323-3
  7. 7.
    Do Nascimento E, Silva GF, Caetano FA, Fernandes MAM, Da Silva DC, De Carvalho MEMD, Pernaut JM, Rebouças JS, Idemori YM (2005) Partially and fully β-brominated Mn-porphyrins in P450 biomimetic systems: effects of the degree of bromination on electrochemical and catalytic properties. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2005.02.019
  8. 8.
    Silva DC, DeFreitas-Silva G, Nascimento E, Rebouças JS, Barbeira PJS, Carvalho MEMD, Idemori YM (2008) Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of beta-bromination. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2008.07.001
  9. 9.
    George RG, Padmanabhan M (2005) Studies on cobalt(II), nickel(II) and copper(II) derivatives of some new meso-aryl substituted octabromoporphyrins. Polyhedron.  https://doi.org/10.1016/j.poly.2005.01.008
  10. 10.
    Hariprasad G, Dahal S, Maiya BG (1996) meso-Substituted octabromoporphyrins: synthesis, spectroscopy, electrochemistry and electronic structure. J Chem Soc Dalton Trans.  https://doi.org/10.1039/DT9960003429
  11. 11.
    Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev.  https://doi.org/10.1021/cr00014a008
  12. 12.
    Meunier B, Robert A, Pratviel G, Bernadou J (2000) In: Kadish KM, Smith KM, Guilard R (eds) The Porphyrin Handbook, vol. 4. Academic, San Diego, pp 119–187Google Scholar
  13. 13.
    Rebouças JS, De Carvalho MEMD, Idemori YM (2002) Perhalogenated 2-pyridylporphyrin complexes: synthesis, self-coordinating aggregation properties, and catalytic studies. J Porphyrins Phthalocyanines.  https://doi.org/10.1142/S1088424602000087
  14. 14.
    Batinic’-Haberle I, Rebouças JS, Spasojevic I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2009.2876
  15. 15.
    Tovmasyan A, Carballal S, Ghazaryan R, Melikyan L, Weitner T, Maia CGC, Rebouças J, Radi R, Spasojevic I, Benov L, Batinic-Haberle I (2014) Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents. Inorganic Chem.  https://doi.org/10.1021/ic501329p
  16. 16.
    Cundari TR (2001) Computational organometalic chemistry. Decker, New YorkGoogle Scholar
  17. 17.
    Harvey JN (2011) The coupled-cluster description of electronic structure: perspectives for bioinorganic chemistry. J Biol Inorg Chem.  https://doi.org/10.1007/s00775-011-0786-7
  18. 18.
    Lawson Daku LM, Aquilante F, Robinson TW, Hauser A (2012) Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+(M = Fe, co). J Chem Theory Comput.  https://doi.org/10.1021/ct300592w
  19. 19.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys.  https://doi.org/10.1039/b907148b
  21. 21.
    Sousa SF, Fernandes PA, Ramos MJJ (2007) General performance of density Functionals. J Phys Chem A.  https://doi.org/10.1021/jp0734474
  22. 22.
    Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys.  https://doi.org/10.1063/1.2834918
  23. 23.
    Grimme S (2011) Density functional theory with London dispersion corrections. Comput Molec Sci.  https://doi.org/10.1002/wcms.30
  24. 24.
    Ogliaro F et al (2000) A model “rebound” mechanism of hydroxylation by Cytochrome P450: stepwise and effectively concerted pathways, and their reactivity patterns. J Am Chem Soc.  https://doi.org/10.1021/ja991878x
  25. 25.
    Visser SP et al (2002) What factors affect the regioselectivity of oxidation by Cytochrome P450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction. J Am Chem Soc.  https://doi.org/10.1021/ja026872d
  26. 26.
    Yoshioka Y, Satoh H, Mitani MJ (2007) Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2007.05.018
  27. 27.
    Broclawik E, Stepniewski A, Radon M (2014) Nitric oxide as a non-innocent ligand in (bio-)inorganic complexes: spin and electron transfer in Fe(II)-NO bond. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2014.01.010
  28. 28.
    Li XX, Wang Y, Zheng Q, Zhang H (2016) Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: a theoretical investigation. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2015.10.009
  29. 29.
    Balcells D, Raynaud C, Crabtree RH, Eisenstein O (2008) A rational basis for the axial Ligand effect in C−H oxidation by [MnO(porphyrin)(X)]+ (X = H2O, OH, O2−) from a DFT study. Inorg Chem.  https://doi.org/10.1021/ic8013706
  30. 30.
    Li HB, Tian SX, Yang J (2008) Theoretical study of the stepwise protonation of the dioxo manganese(V) porphyrin. J Phys Chem B.  https://doi.org/10.1021/jp808443n
  31. 31.
    De Angelis F, Fantacci S, Sgamellotti A, Pizzotti M, Tessore F, Biroli AO (2007) Time-dependent and coupled-perturbed DFT and HF investigations on the absorption spectrum and non-linear optical properties of push-pull M(II)-porphyrin complexes (M = Zn, cu, Ni). Chem Phys Lett.  https://doi.org/10.1016/j.cplett.2007.08.096
  32. 32.
    Ghosh A, Conradie MM, Conradie J (2011) Capturing the spin state diversity of iron(III)-aryl porphyrins: OLYP is better than TPSSh. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2010.09.010
  33. 33.
    Kepp KP (2011) The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2011.07.012
  34. 34.
    Swart M, Güel M, Solà M (2010) Accurate description of spin states and its implications for catalysis. In: Matta CF (ed) Quantum biochemistry: electronic structure and biological activity. Wiley-VCH, Weinheim-Germany, pp 551–583Google Scholar
  35. 35.
    Swart M (2013) Spin states of (bio)inorganic systems: successes and pitfalls. Int J Quantum Chem.  https://doi.org/10.1002/qua.24255
  36. 36.
    Kepp KP (2013) Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord Chem Rev.  https://doi.org/10.1016/j.ccr.2012.04.020
  37. 37.
    Ali E et al (2012) Electronic structure, spin-states, and spin-crossover reaction of Heme-related Fe-Porphyrins: a theoretical perspective. J Phys Chem B.  https://doi.org/10.1021/jp3021563
  38. 38.
    Mortensen SR, Kepp KP (2015) Spin propensities of octahedral complexes from density functional theory. J Phys Chem A.  https://doi.org/10.1021/acs.jpca.5b01626
  39. 39.
    Jensen KP, Roos BO, Ryde U (2005) O2-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods. J Inorg Biochem.  https://doi.org/10.1016/j.jinorgbio.2004.11.008
  40. 40.
    Vancoillie S, Zhao H, Tran VT, Hendrickx MFA, Pierloot K (2011) Multiconfigurational second-order perturbation theory restricted active space (RASPT2) studies on mononuclear first-row transition-metal systems. J Chem Theory Comput.  https://doi.org/10.1021/ct200597h
  41. 41.
    Pierloot K (2003) The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes. Mol Phys.  https://doi.org/10.1080/0026897031000109356
  42. 42.
    Radon MJ (2014) Spin-state energetics of heme-related models from DFT and coupled cluster calculations. J Chem Theory Comput.  https://doi.org/10.1021/ct500103h
  43. 43.
    Zhao H, Pierloot K, Langner EH, Swarts JC, Conradie J, Ghosh A (2012) Low-energy states of manganese–oxo corrole and corrolazine: multiconfiguration reference ab initio calculations. Inorg Chem.  https://doi.org/10.1021/ic201972f
  44. 44.
    Vancoillie S, Zhao H, Radon MJ (2010) Performance of CASPT2 and DFT for relative spin-state energetics of heme models. J Chem Theory Comput. 6:576–582.  https://doi.org/10.1021/ct900567c CrossRefGoogle Scholar
  45. 45.
    Liao M, Watts JD, Huang M (2005) DFT study of unligated and ligated manganese(II) porphyrins and phthalocyanines. Inorg Chem.  https://doi.org/10.1021/ic0401039
  46. 46.
    De Angelis F, Jin N, Car R, Groves JT (2006) Electronic structure and reactivity of isomeric oxo-Mn(V) porphyrins: effects of spin-state crossing and pKa modulation. Inorg Chem.  https://doi.org/10.1021/ic060306s
  47. 47.
    Goldberg DP, Telser J, Krzystek J, Montalban AG, Brunel LC, Barrett AGM, Hoffman BM (1997) EPR spectra from “EPR-silent” species: high-field EPR spectroscopy of manganese(III) porphyrins. J Am Chem Soc.  https://doi.org/10.1021/ja971169o
  48. 48.
    Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel LC (1999) High-frequency and -field electron paramagnetic resonance of high-spin manganese(III) in porphyrinic complexes. Inorg Chem.  https://doi.org/10.1021/ic9901970
  49. 49.
    Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in 3D transition-metal chemistry. J Chem Phys.  https://doi.org/10.1063/1.2162161
  50. 50.
    Conradie J, Ghosh AJ (2007) DFT calculations on the spin-crossover complex Fe(salen)(NO): a quest for the best functional. J Phys Chem B.  https://doi.org/10.1021/jp074480t
  51. 51.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A.  https://doi.org/10.1103/PhysRevA.38.3098
  52. 52.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B.  https://doi.org/10.1103/PhysRevB.46.6671
  53. 53.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B.  https://doi.org/10.1103/PhysRevB.54.16533
  54. 54.
    Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New YorkGoogle Scholar
  55. 55.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.77.3865
  56. 56.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple.  https://doi.org/10.1103/PhysRevLett.78.1396
  57. 57.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.91.146401
  58. 58.
    Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys.  https://doi.org/10.1080/00268970010018431
  59. 59.
    Hoe WM, Cohen A, Handy NC (2001) Assessment of a new local exchange functional OPTX. Chem Phys Lett.  https://doi.org/10.1016/S0009-2614(01)00581-4
  60. 60.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B.  https://doi.org/10.1103/PhysRevB.37.785
  61. 61.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett.  https://doi.org/10.1016/0009-2614(89)87234-3
  62. 62.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys.  https://doi.org/10.1063/1.464913
  63. 63.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys.  https://doi.org/10.1063/1.2370993
  64. 64.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys.  https://doi.org/10.1063/1.478522
  65. 65.
    Heyd J, Scuseria GE (2004) Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened coulomb hybrid functional. J Chem Phys.  https://doi.org/10.1063/1.1760074
  66. 66.
    Heyd J, Scuseria GE (2004) Assessment and validation of a screened coulomb hybrid density functional. J Chem Phys.  https://doi.org/10.1063/1.1668634
  67. 67.
    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys.  https://doi.org/10.1063/1.2085170
  68. 68.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys.  https://doi.org/10.1063/1.2404663
  69. 69.
    Cohen AJ, Handy NC (2001) Dynamic correlation. Mol Phys.  https://doi.org/10.1080/00268970010023435
  70. 70.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts.  https://doi.org/10.1007/s00214-007-0310-x
  71. 71.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys.  https://doi.org/10.1063/1.448799
  72. 72.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys.  https://doi.org/10.1063/1.452288
  73. 73.
    Rassolov VA, Pople JA, Ratner MA, Windus TL (1988) 6-31G* basis set for atoms K through Zn. J Chem Phys 109:1223.  https://doi.org/10.1063/1.476673 CrossRefGoogle Scholar
  74. 74.
    Mitin AV, Baker J, Pulay P (2003) An improved 6-31G* basis set for first-row transition metals. J Chem Phys.  https://doi.org/10.1063/1.1563619
  75. 75.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys.  https://doi.org/10.1039/b508541a
  76. 76.
    Frisch GW et al (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  77. 77.
    Munro O, Bradley JA, Hancock RD, Marques HM, Marsicano F, Wade PW (1992) Molecular mechanics study of the ruffling of metalloporphyrins. J Am Chem Soc.  https://doi.org/10.1021/ja00044a038
  78. 78.
    Amabilino S, Deeth RJ (2017) DFT analysis of spin crossover in Mn(III) complexes: is a two-electron S = 2 to S = 0 spin transition feasible? Inorg Chem.  https://doi.org/10.1021/acs.inorgchem.6b02793

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto Federal de Educação, Ciência e Tecnologia—Campus SousaSousaBrazil
  2. 2.Departamento de Química, Centro de Ciências Exatas e da NaturezaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations