Skip to main content

Advertisement

Log in

Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A computational study of metal difluorides (MF2; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca–F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn–Teller effect in nonlinear MF2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO2 with ScF2 (Scc3 geometry) and TiF2 (Tic2 geometry) caused CO2 to shift from its usual linear geometry to a bent geometry (η2(C=O) binding mode), while it retained its linear geometry (η1(O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H2O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO2. Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO2 capture under moist conditions.

Interaction of metal difluorides with carbon dioxide and water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112(2):724–781. https://doi.org/10.1021/cr2003272

    Article  CAS  Google Scholar 

  2. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080. https://doi.org/10.1039/c4cs00035h

  3. Spigarelli BP, Kawatra SK (2013) Opportunities and challenges in carbon dioxide capture. J CO2 Util 1:69–87. https://doi.org/10.1016/j.jcou.2013.03.002

    Article  CAS  Google Scholar 

  4. Sreenivasulu B, Sreedhar I, Suresh P, Raghavan KV (2015) Development trends in porous adsorbents for carbon capture. Environ Sci Technol 49(21):12641–12661. https://doi.org/10.1021/acs.est.5b03149

    Article  CAS  Google Scholar 

  5. Zhang B, Duan Y, Johnson K (2012) Density functional theory study of CO2 capture with transition metal oxides and hydroxides. J Chem Phys 136(6):064516. https://doi.org/10.1063/1.3684901

  6. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R (2014) Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr B 70(1):3–10. https://doi.org/10.1107/S2052520613029557

  7. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7(11):3478–3518. https://doi.org/10.1039/c4ee01647e

  8. Mitoraj MP (2011) Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV). J Phys Chem A 115(51):14708–14716. https://doi.org/10.1021/jp209712s

    Article  CAS  Google Scholar 

  9. Mitoraj MP, Parafiniuk M, Srebro M, Handzlik M, Buczek A, Michalak A (2011) Applications of the ETS-NOCV method in descriptions of chemical reactions. J Mol Model 17(9):2337. https://doi.org/10.1007/s00894-011-1023-6

    Article  CAS  Google Scholar 

  10. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102. https://doi.org/10.1063/1.3159673

    Article  Google Scholar 

  11. Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13(2):347–355. https://doi.org/10.1007/s00894-006-0149-4

    Article  CAS  Google Scholar 

  12. Mitoraj MP, Michalak A (2013) Theoretical description of halogen bonding—an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV). J Mol Model 19(11):4681–4688. https://doi.org/10.1007/s00894-012-1474-4

  13. Frenking G (2001) Understanding the nature of the bonding in transition metal complexes: from Dewar’s molecular orbital model to an energy partitioning analysis of the metal–ligand bond. J Organomet Chem 635(1):9–23. https://doi.org/10.1016/S0022-328X(01)01154-8

    Article  CAS  Google Scholar 

  14. Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, Barbour LJ, Eddaoudi M (2016) A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 138(29):9301–9307. https://doi.org/10.1021/jacs.6b05345

  15. Wilmer CE, Farha OK, Bae Y-S, Hupp JT, Snurr RQ (2012) Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ Sci 5(12):9849–9856. https://doi.org/10.1039/c2ee23201d

  16. Zhang D-S, Chang Z, Li Y-F, Jiang Z-Y, Xuan Z-H, Zhang Y-H, Li J-R, Chen Q, Hu T-L, Bu X-H (2013) Fluorous metal–organic frameworks with enhanced stability and high H2/CO2 storage capacities. 3:3312. doi:https://doi.org/10.1038/srep03312. https://www.nature.com/articles/srep03312#supplementary-information

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

  18. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  19. Popelier PLA (1994) An analytical expression for interatomic surfaces in the theory of atoms in molecules. Theor Chim Acta 87(6):465–476. https://doi.org/10.1007/bf01127809

    Article  CAS  Google Scholar 

  20. Popelier PLA (1996) MORPHY, a program for an automated “atoms in molecules” analysis. Comput Phys Commun 93(2):212–240

    Article  CAS  Google Scholar 

  21. Popelier PLA (1996) On the differential geometry of interatomic surfaces. Can J Chem 74(6):829–838. https://doi.org/10.1139/v96-092

    Article  CAS  Google Scholar 

  22. Popelier PLA (1996) Integration of atoms in molecules: a critical examination. Mol Phys 87(5):1169–1187. https://doi.org/10.1080/00268979600100781

    Article  CAS  Google Scholar 

  23. Popelier PLA (1998) A method to integrate an atom in a molecule without explicit representation of the interatomic surface. Comput Phys Commun 108(2):180–190

    Article  CAS  Google Scholar 

  24. te Velde G, Bickelhaupt FM, Baerends EJ, et al. (2001) Chemistry with ADF. J Comput Chem 22:931--967. doi:https://doi.org/10.1002/jcc.1056

  25. Baerends EJ, Ziegler T, Atkins AJ, et al. (2017) ADF2017. SCM, Amsterdam. https://www.scm.com

  26. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  27. Atkins AJ, Bauer M, Jacob CR (2015) High-resolution X-ray absorption spectroscopy of iron carbonyl complexes. Phys Chem Chem Phys 17(21):13937–13948. https://doi.org/10.1039/c5cp01045d

    Article  CAS  Google Scholar 

  28. van Leeuwen R, Baerends EJ (1994) Exchange-correlation potential with correct asymptotic behavior. Phys Rev A 49(4):2421–2431

    Article  Google Scholar 

  29. Van Lenthe E, Baerends EJ (2003) Optimized Slater-type basis sets for the elements 1–118. J Comput Chem 24(9):1142–1156. doi:https://doi.org/10.1002/jcc.10255

  30. Vogt N (2001) Equilibrium bond lengths, force constants and vibrational frequencies of MnF2, FeF2, CoF2, NiF2, and ZnF2 from least-squares analysis of gas-phase electron diffraction data. J Mol Struct 570(1):189–195. https://doi.org/10.1016/S0022-2860(01)00510-5

  31. Wang SG, Schwarz WHE (1998) Density functional study of first row transition metal dihalides. J Chem Phys 109(17):7252–7262. https://doi.org/10.1063/1.477359

    Article  CAS  Google Scholar 

  32. Vest B, Schwerdtfeger P, Kolonits M, Hargittai M (2009) Chromium difluoride: probing the limits of structure determination. Chem Phys Lett 468(4):143–147. https://doi.org/10.1016/j.cplett.2008.12.008

    Article  CAS  Google Scholar 

  33. Pandey RK, Waters K, Nigam S, He H, Pingale SS, Pandey AC, Pandey R (2014) A theoretical study of structural and electronic properties of alkaline-earth fluoride clusters. Comput Theor Chem 1043:24–30. https://doi.org/10.1016/j.comptc.2014.05.007

    Article  CAS  Google Scholar 

  34. Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25(8):225–273. https://doi.org/10.1016/S0167-5729(96)00007-6

    Article  Google Scholar 

  35. Stoneburner SJ, Livermore V, McGreal ME, Yu D, Vogiatzis KD, Snurr RQ, Gagliardi L (2017) Catechol-ligated transition metals: a quantum chemical study on a promising system for gas separation. J Phys Chem C 121(19):10463–10469. https://doi.org/10.1021/acs.jpcc.7b02685

    Article  CAS  Google Scholar 

  36. Ev L, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99(6):4597–4610. https://doi.org/10.1063/1.466059

    Article  Google Scholar 

  37. Ev L, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101(11):9783–9792. https://doi.org/10.1063/1.467943

    Article  Google Scholar 

  38. Park J, Kim H, Han SS, Jung Y (2012) Tuning metal–organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. J Phys Chem Lett 3(7):826–829. https://doi.org/10.1021/jz300047n

  39. Lü K, Zhou J, Zhou L, Chen XS, Chan SH, Sun Q (2012) Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. J Chem Phys 136(23):234703. https://doi.org/10.1063/1.4729471

  40. Kunkel C, Vines F, Illas F (2016) Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ Sci 9(1):141–144. https://doi.org/10.1039/c5ee03649f

Download references

Acknowledgements

This work was supported by the INSPIRE program under the Department of Science and Technology, India [DST/INSPIRE fellowship/2015/IF0672].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Electronic supplementary material

ESM 1

(DOC 2132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arokiyanathan, A.L., Lakshmipathi, S. Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation. J Mol Model 23, 345 (2017). https://doi.org/10.1007/s00894-017-3511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3511-9

Keywords

Navigation