Skip to main content
Log in

Electronic properties of the polypyrrole-dopant anions ClO4 and MoO4 2−: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conductive properties of polypyrrole chains doped with ClO4 or MoO4 2− anions and the existence of polarons and bipolarons in these doped polypyrrole chains were investigated by performing computational calculations based on density functional theory (DFT). Doping with these anions was found to decrease the band gap of the polypyrrole. Theoretical calculations revealed that changing the type of oxidative agent applied does not affect the conversion of polypyrrole into a conducting polymer, but the conductivity of the doped polypyrrole does depend on the ratio of oxidant to polypyrrole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diaz AF, Kanazawa KK, Gardini GP (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun 14:635–646. https://doi.org/10.1039/C39790000635

  2. Fonner JM, Schmidt CE, Ren P (2010) A combined molecular dynamics and experimental study of doped polypyrrole. Polymer 51:4985–4993. https://doi.org/10.1016/j.polymer.2010.08.024

  3. Diaz AF, Bargon J (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol. 1. Marcel Dekker, New York, p. 82

  4. Ouyang J, Li Y (1997) Great improvement of polypyrrole films prepared electrochemically from aqueous solutions by adding nonaphenolpolyethyleneoxy (10) ether. Polymer 38:3997–3999. https://doi.org/10.1016/S0032-3861(97)00087-6

    Article  CAS  Google Scholar 

  5. Myers RE (1986) Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J Electron Mater 15:61–69. https://doi.org/10.1007/BF02649904

  6. Armes SP (1987) Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synth Met 20:365–371. https://doi.org/10.1016/0379-6779(87)90833-2

  7. Dai Y, Wei C, Blaisten-Barojas E (2013) Density functional theory study of neutral and oxidized thiophene oligomers. J Chem Phys 139:184905. https://doi.org/10.1063/1.4829538

  8. Barford W, Marcus M, Tozer OR (2016) Polarons in π-conjugated polymers: Anderson or Landau? J Phys Chem A 120:615–620. https://doi.org/10.1021/acs.jpca.5b08764

  9. Deibel C, Strobel T, Dyakonov V (2009) Origin of the efficient polaron-pair dissociation in polymer-fullerene blends. Phys Rev Lett 103:036402. https://doi.org/10.1103/PhysRevLett.103.036402

  10. Kowalski D, Ueda M, Ohtsuka T (2007) The effect of counter ions on corrosion resistance of steel covered by bi-layered polypyrrole film. Corros Sci 49:3442–3452. https://doi.org/10.1016/j.corsci.2007.03.007

  11. Johanson U, Marandi M, Tamm T, Tamm J (2005) Comparative study of the behavior of anions in polypyrrole films. Electrochim Acta 50(7–8):1523–1528. https://doi.org/10.1016/j.electacta.2004.10.016

  12. Zhou X, Chen X, He T, Bi Q, Sun L, Liu Z (2017) Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries. Appl Surf Sci 405(31):146–151. https://doi.org/10.1016/j.apsusc.2017.02.050

  13. Fang W, Zhang N, Fan L, Sun K (2017) Preparation of polypyrrole-coated Bi2O3@CMK-3 nanocomposite for electrochemical lithium storage. Electrochim Acta 238(1):202–209. https://doi.org/10.1016/j.electacta.2017.04.032

  14. Shrestha AR, Shrestha S, Park CH, Kim CS (2017) In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens Bioelectron 94:686–693. https://doi.org/10.1016/j.bios.2017.03.072

  15. Ayenimo JG, Adeloju SB (2017) Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences. Food Chem 229:127–135. https://doi.org/10.1016/j.foodchem.2017.01.138

  16. Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186. https://doi.org/10.1016/j.jpowsour.2017.03.128

  17. Fang Y, Jiang X, Niu L, Wang S (2017) Constructing polypyrrole/aligned carbon nanotubes composite materials as electrodes for high-performance supercapacitors. Mater Lett 190:232–235. https://doi.org/10.1016/j.matlet.2016.12.110

  18. Ebrahimi I, Gashti MP (2016) Chemically reduced versus photo-reduced clay-Ag-polypyrrole ternary nanocomposites: comparing thermal, optical, electrical and electromagnetic shielding properties. Mater Res Bull 83:96–107. https://doi.org/10.1016/j.materresbull.2016.05.024

  19. Zhao HL, Lu Y (2016) Electromagnetic shieldingeffectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem Eng J 297:170–179. https://doi.org/10.1016/j.cej.2016.04.004

  20. Grari O, Taouil AE, Dhouibi L, Buron CC, Lallemand F (2015) Multilayered polypyrrole SiO2 composite coatings for functionalization of stainless steel: characterization and corrosion protection behavior. Prog Org Coat 88:48–53. https://doi.org/10.1016/j.porgcoat.2015.06.019

  21. Vera R, Schrebler GP, Romero H (2014) The corrosion-inhibiting effect of polypyrrole films doped with p-toluene-sulfonate, benzene-sulfonate or dodecyl-sulfate anions, as coating on stainless steel in NaCl aqueous solutions. Prog Org Coat 77(4):853–858. https://doi.org/10.1016/j.porgcoat.2014.01.015

  22. Paliwoda-Porebska G, Rohwerder M, Stratmann M, Rammelt U, Duc LM, Plieth W (2006) Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. J Solid State Electrochem 10(9):730–736. https://doi.org/10.1007/s10008-006-0118-y

  23. Rammelt U, Duc LM, Plieth W (2005) Improvement of protection performance of polypyrrole by dopant anion. J Appl Electrochem 35:1225–1230. https://doi.org/10.1007/s10800-005-9033-7.

  24. Trung VQ, Hoan PV, Phung DQ, Duc LM, Hang LTT (2014) Double corrosion protection mechanism of molybdate-doped polypyrrole/montmorillonite nanocomposites. J Exp Nanosci 9(3):282–292. https://doi.org/10.1080/17458080.2012.656710

  25. Ilangovan G, Pillai KC (1999) Preparation and characterisation of monomeric molybdate(VI) anion-doped polypyrrole electrodes. J Solid State Electrochem 3(7):474–477. https://doi.org/10.1007/s100080050184

  26. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(5):799–805. https://doi.org/10.1039/P29930000799

  27. Hoang HV, Nguyen TD, Nguyen HN (2013) Corrosion inhibition mechanism of pyridine ion iron and its alloys using DFT. Asian J Chem 25(6):3117–3120. 10.14233/ajchem.2013.13548

  28. Li WK, Hu P, Lu G, Gong XQ (2014) Density functional theory study of mixed-phase TiO2: heterostructures and electronic properties. J Mol Model 20(4):2215. https://doi.org/10.1007/s00894-014-2215-7.

  29. Supatutkul C, Pramchu S, Jaroenjittichai AP, Laosiritawor Y (2016) Density functional theory investigation of surface defects in Sn-doped ZnO. Surf Coat Technol 306(Pt A):364–368. https://doi.org/10.1016/j.surfcoat.2016.04.013

  30. Sun J, Xie X, Cao B, Duan H (2017) A density functional theory study of Au13, Pt13, Au12Pt and Pt12Au clusters. Comput Theor Chem 1107:127–135. https://doi.org/10.1016/j.comptc.2017.02.002

  31. Rad AS, Esfahanian M, Ganjian E, Tayebi H, Novir SB (2016) Thepolythiophene molecular segment as a sensor model for H2O, HCN, NH3, SO3, and H2S: a density functional theory study. J Mol Model 22(6):127. https://doi.org/10.1007/s00894-016-3001-5.

  32. Asath RM, Rekha TN, Premkumar S, Mathavan T, Benial AMF (2016) Vibrational, spectroscopic, molecular docking anddensity functional theory studies on N-(5-aminopyridin-2-yl)acetamide. J Mol Struct 1125:633–642. https://doi.org/10.1016/j.molstruc.2016.07.064

  33. Jomphoak A, Maezono R, Onjun T (2016) Density functional theory, of graphene/Cu phthalocyanine composite material. Surf Coat Technol 306(Pt A):236–239. https://doi.org/10.1016/j.surfcoat.2016.06.015

  34. López-Carballeira D, Ruipérez F (2016) Evaluation of modern DFT functionals and G3n-RAD composite methods in the modelization of organic singlet diradicals. J Mol Model 22(4):76. https://doi.org/10.1007/s00894-016-2950-z.

  35. Dai Y, Chowdhury S, Blaisten-Balojas E (2011) Density functional theory study of the structure energetics of negatively charged oligopyrroles. Int J Quantum Chem 111:2295–2305. https://doi.org/10.1002/qua.22659

  36. Ullah H, ShahA u-H A, Bilal S, Ayub K (2014) Doping and dedoping processes of polypyrrole: DFT study with hybrid functionals. J Phys Chem C 118(31):17819–17830. https://doi.org/10.1021/jp505626d

  37. Abdulla HS, Abbo AI (2012) Optical and electrical properties of thin films of polyaniline and polypyrrole. Int J Electrochem Sci 7:10666–10678

  38. Ullah R, Ullah H, Shah A-u-H A, Bilal S, Ali K (2017) Oligomeric synthesis and density functional theory of leucoemeraldine base form of polyaniline. J Mol Struct 1127:734–741. https://doi.org/10.1016/j.molstruc.2016.08.009

  39. Zhang Y, Duan Y, Liu J (2017) Time-dependent density functional theory study on the excited-state hydrogen-bonding characteristics of polyaniline in aqueous environment. Spectrochim Acta A 171:305–310. https://doi.org/10.1016/j.saa.2016.08.039

  40. Cherrak Z, Lagant P, Benharrats N, Semmoud A, Hamdache F, Vergoten G (2005) Density functional theory and empirical derived force fields for the delocalized polaron form of polyaniline: application to properties determination of an isolated oligomer using molecular dynamics simulations. Spectrochim Acta A 61(7):1419–1429. https://doi.org/10.1016/j.saa.2004.10.046

  41. Rittmeyer SP, Groß A (2012) Structural and electronic properties of oligo- and polythiophenes modified by substituents. Beilstein J Nanotechnol 3:909–919. https://doi.org/10.3762/bjnano.3.101

  42. Ramírez-Solís A, Kirtman B, Bernal-Jáquez R, Zicovich-Wilson CM (2009) Periodic density functional theory studies of Li-doped polythiophene: dependence of electronic and structural properties on dopant concentration. J Chem Phys 130:164904. https://doi.org/10.1063/1.3109079

  43. Bouzzine SM, Salgado-Morán G, Hamidi M, Bouachrine M, Pacheco AG, Glossman-Mitnik D (2015) DFT study of polythiophene energy band gap and substitution effects. J Chemistry 296386. https://doi.org/10.1155/2015/296386.

  44. Perdew JP, Burke K, Ernzerhof (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

  45. Yurtsever E, Yurtsever M (1999) A theoretical study of structural defects in conjugated polymers. Synth Met 101(1–3):335–336. https://doi.org/10.1016/S0379-6779(98)01343-5

  46. Rabias I, Howlin BJ (2001) A combined ab initio and semi-empirical study on the theoretical vibrational spectra and physical properties of polypyrrole. Comput Theor Polym Sci 11:241–249. https://doi.org/10.1016/S1089-3156(00)00010-6

  47. Santos MJL, Rubira AF, Pontes RM, Basso EA, Girotto EM (2006) Electrochromic properties of poly(alkoxy-terthiophenes): an experimental and theoretical investigation. J Solid State Electrochem 10:117–122. https://doi.org/10.1007/s10008-005-0679-1

  48. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000. https://doi.org/10.1103/PhysRevLett.52.997

  49. Nygaard U, Nielsen JT, Kirchheiner J, Maltesen G, Rastrup-Andersen J, Sørensen GO (1969) Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and 14N quadrupole coupling constants of pyrrole. J Mol Struct 3(6):491–506. https://doi.org/10.1016/0022-2860(69)80031-1

  50. NIST (2017) NIST Standard Reference Database 35: NIST/EPA Gas-Phase Infrared Database JCAMP Format. https://www.nist.gov/srd/nist-standard-reference-database-35.

  51. Jones RA, Bean GP (1977) Chemistry of pyrroles. Academic, New York

  52. Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments, and all that. Am J Phys 50:982–986. https://doi.org/10.1119/1.12937.

  53. Hilborn RC (1983) Erratum: “Einstein coefficients, cross sections, f values, dipole moments, and all that”. Am J Phys 51(5):471. https://doi.org/10.1119/1.13515

  54. Streetman BG, Banerjee S (2000) Solid state electronic devices, 5th edn. Prentice Hall, Upper Saddle River

  55. Wencheng S, Iroh JO (2000) Electrodeposition mechanism of polypyrrole coatings on steel substrates from aqueous oxalate solutions. Electrochim Acta 46(1):1–8. https://doi.org/10.1016/S0013-4686(00)00518-1

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2013.69.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Quoc Trung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, N.N., Cuong, N.T., Van Hung, H. et al. Electronic properties of the polypyrrole-dopant anions ClO4 and MoO4 2−: a density functional theory study. J Mol Model 23, 336 (2017). https://doi.org/10.1007/s00894-017-3509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3509-3

Keywords

Navigation