MS-CASPT2 study of the ground and low lying states of CsH+


Correlated ab initio methods [CASPT2 and R-CCSD(T)] in conjunction with the ANO-RCC basis sets in large contraction were used to calculate potential energy curves (PECs) of the ground and excited electronic states of CsH+ (doublets and quartets) with the inclusion of the scalar relativistic effects and spin-orbit interaction. The ground X2Σ+ state is a rather fragile van der Waals molecular ion. The binding energy of this X2Σ+ state provided by both computational methods is estimated to be 0.02–0.04 eV, and is compared with the reported experimental binding energy (0.51–0.77 eV). This large binding energy can be attributed to the A2Σ+ state, and can thus explain the apparent disagreement between theory and experiment. The spectroscopic constants of all bound states were calculated from the PECs and compared with previous published data for X2Σ+ and A2Σ+ states.

Low-lying Ω states of cesium hydride cation

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Gutser R, Wunderlich D, Fantz U (2011) Dynamics of the transport of ionic and atomic cesium in radio frequency-driven ion sources for ITER neutral beam injection. Plasma Phys Control Fusion 53:105014.

    Article  Google Scholar 

  2. 2.

    Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, et al. (2009) Status of the ITER heating neutral beam system. Nucl Fusion 49:045006.

    Article  Google Scholar 

  3. 3.

    Fantz U, Franzen P, Kraus W, Berger M, Christ-Koch S, et al. (2007) Negative ion RF sources for ITER NBI: status of the development and recent achievements. Plasma Phys Contr Fusion 49:B563–B580.

    CAS  Article  Google Scholar 

  4. 4.

    Heinemann B, Falter H, Fantz U, Franzen P, Fröschle M, et al (2009) Design of the “half-size” ITER neutral beam source for the test facility ELISE. Fusion Eng Design 84:915–922.

    CAS  Article  Google Scholar 

  5. 5.

    Kraus W, Fantz U, Franzen P, Froschle M, Heinemann B, et al. (2012) The development of the radio frequency driven negative ion source for neutral beam injectors (invited). Rev Sci Instr 83:02B104–02B105.

    CAS  Article  Google Scholar 

  6. 6.

    Fantz U, Franzen P, Wünderlich D (2012) Development of negative hydrogen ion sources for fusion: experiments and modelling. Chem Phys 398:7–16.

    CAS  Article  Google Scholar 

  7. 7.

    Škoviera J, Neogrády P, Louis F, Pitoňák M, Černušák I (2017) Caesium hydride: MS-CASPT2 potential energy curves and A1Σ+→X1Σ+ absorption/emission spectroscopy. J Chem Phys 146:104304.

    Article  Google Scholar 

  8. 8.

    Stwalley WC, Zemke WT, Yang SC (1991) Spectroscopy and structure of the alkali hydride diatomic molecules and their ions. J Phys Chem Ref Data 20:153–187.

    CAS  Article  Google Scholar 

  9. 9.

    Olson RE, Shipsey EJ, Browne JC (1976) Theoretical cross sections for H-on-Cs ionic and neutral reactions. Phys Rev A 13:180–195.

    CAS  Article  Google Scholar 

  10. 10.

    Karo AM, Gardner MA, Hiskes JR (1978) Abinitio MC–SCF ground-state potential energy curves for LiH, NaH, and CsH. J Chem Phys 68:1942–1950.

    CAS  Article  Google Scholar 

  11. 11.

    Scheidt H, Spiess G, Valance A, Pradel P (1978) Determination of H+ +Cs(6s) potential from differential cross section measurements at energies 13.4-24.2 eV. J Phys B Atomic Mol Phys 11:2665–2685.

    CAS  Article  Google Scholar 

  12. 12.

    von Szentpály L, Fuentealba P, Preuss H, Stoll H (1982) Pseudopotential calculations on Rb+ 2, Cs+ 2, RbH+, CsH+ and the mixed alkali dimer ions. Chem Phys Lett 93:555–559.

    Article  Google Scholar 

  13. 13.

    Kimura M, Olson RE, Pascale J (1982) Molecular treatment of electron capture by protons from the ground and excited states of alkali-metal atoms. Phys Rev A 26:3113–3124.

    CAS  Article  Google Scholar 

  14. 14.

    Valance A, Spiess G (1975) Calculation of inelastic cross sections for H++Cs → H(n=2)+Cs+. J Chem Phys 63:1487–1489.

    CAS  Article  Google Scholar 

  15. 15.

    Sidis V, Kubach C (1978) Theoretical study of the elastic and charge exchange processes in H+ +Cs collision. J Phys B Atomic Mol Phys 11:2687–2703.

    CAS  Article  Google Scholar 

  16. 16.

    Aquilante F, De Vico L, Ferre H, Ghigo G, Malmqvist P-Å, et al. (2010) MOLCAS 7: the next generation. J Comput Chem 31:224–247.

    CAS  Article  Google Scholar 

  17. 17.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A 5th-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483.

    CAS  Article  Google Scholar 

  18. 18.

    Urban M, Noga J, Cole SJ, Bartlett RJ (1985) Towards a full CCSDT model for electron correlation. J Chem Phys 83:4041–4046.

    CAS  Article  Google Scholar 

  19. 19.

    Urban M, Černušák I, Kellö V, Noga J (1987) Methods in computational chemistry. In: Wilson SE (ed) Methods in computational chemistry. Electron correlation in atoms and molecules, vol 1. Plenum, New York, pp 117–250

  20. 20.

    Watts JD, Gauss J, Bartlett RJ (1993) Coupled-cluster methods with noniterative triple excitations for restricted open-Shell Hartree-Fock and other general single determinant reference functions—energies and analytical gradients. J Chem Phys 98:8718–8733.

    CAS  Article  Google Scholar 

  21. 21.

    Knowles PJ, Hampel C, Werner HJ (1993) Coupled cluster theory for high spin, open shell reference wave functions. J Chem Phys 99:5219–5227.

    CAS  Article  Google Scholar 

  22. 22.

    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schutz N (2012) MOLPRO, ver. 2012.1, a package of ab initio programs. http://www/

  23. 23.

    Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149.

    CAS  Article  Google Scholar 

  24. 24.

    Forsberg N, Malmqvist P-Å (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204.

    CAS  Article  Google Scholar 

  25. 25.

    Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (NY) 82:89–155.

    CAS  Article  Google Scholar 

  26. 26.

    Hess BA (1986) Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748.

    CAS  Article  Google Scholar 

  27. 27.

    Roos B, Malmqvist P-A (2004) Relativistic quantum chemistry: the multiconfigurational approach. Phys Chem Chem Phys 6:2919–2927.

    CAS  Article  Google Scholar 

  28. 28.

    Roos B, Veryazov V, Widmark PO (2004) Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor Chem Accounts 111:345–351.

    CAS  Article  Google Scholar 

  29. 29.

    Walch SP, Bauschlicher Jr CW, Siegbahn PEM, Partridge H (1982) All electron GVB/CI potential curves for the X1Σ+ g state of Cs2. Chem Phys Lett 92:54–58.

    CAS  Article  Google Scholar 

  30. 30.

    Dunham JL (1932) The energy levels of the rotating vibrator. Phys Rev 41:721–731.

    CAS  Article  Google Scholar 

  31. 31.

    Karwowski J, Witek HA (2016) Schrodinger equations with power potentials. Mol Phys 114:932–940.

    CAS  Article  Google Scholar 

Download references


We thank Slovak Grant Agencies Vedecká grantová agentúra MŠVVaŠ SR a SAV (VEGA) (Grant 1/0092/14) and Agentúra na podporu výskumu a vývoja (APVV) (Project APVV-15-0105). This work was carried out within the framework of the EUROfusion Consortium, and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. J.Š. is thankful for the support from the French-Slovak Co-tutelle PhD programme. We thank the Centre de Ressources Informatiques (CRI) of the University of Lille1, the Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) and the Research & Development Operational Programme funded by European Regional Development Fund (ERDF) (CGreen-I 26240120001 and CGreen-II 26240120025) for support. J.Š. and F.L. also appreciate support from PIA managed by the French National Research Agency (ANR) under Grant Agreement No. ANR-11-LABX-0005-01 called CaPPA (Chemical and Physical Properties of the Atmosphere) and also supported by the Regional Council “Nord-Pas de Calais” and the “European Funds for Regional Economic Development.”

Author information



Corresponding author

Correspondence to Ivan Černušák.

Additional information

This paper belongs to Topical Collection QUITEL 2016

Electronic supplementary material


(PDF 888 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Škoviera, J., Černušák, I., Louis, F. et al. MS-CASPT2 study of the ground and low lying states of CsH+ . J Mol Model 23, 339 (2017).

Download citation


  • Cesium hydride
  • CASPT2
  • Spectroscopic properties
  • Plasma sources
  • Potential energy curves