Journal of Molecular Modeling

, 23:339 | Cite as

MS-CASPT2 study of the ground and low lying states of CsH+

  • Ján Škoviera
  • Ivan ČernušákEmail author
  • Florent Louis
  • Pavel Neogrády
Original Paper
Part of the following topical collections:
  1. QUITEL 2016


Correlated ab initio methods [CASPT2 and R-CCSD(T)] in conjunction with the ANO-RCC basis sets in large contraction were used to calculate potential energy curves (PECs) of the ground and excited electronic states of CsH+ (doublets and quartets) with the inclusion of the scalar relativistic effects and spin-orbit interaction. The ground X2Σ+ state is a rather fragile van der Waals molecular ion. The binding energy of this X2Σ+ state provided by both computational methods is estimated to be 0.02–0.04 eV, and is compared with the reported experimental binding energy (0.51–0.77 eV). This large binding energy can be attributed to the A2Σ+ state, and can thus explain the apparent disagreement between theory and experiment. The spectroscopic constants of all bound states were calculated from the PECs and compared with previous published data for X2Σ+ and A2Σ+ states.

Graphical abstract

Low-lying Ω states of cesium hydride cation


Cesium hydride CASPT2 Spectroscopic properties Plasma sources Potential energy curves 



We thank Slovak Grant Agencies Vedecká grantová agentúra MŠVVaŠ SR a SAV (VEGA) (Grant 1/0092/14) and Agentúra na podporu výskumu a vývoja (APVV) (Project APVV-15-0105). This work was carried out within the framework of the EUROfusion Consortium, and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. J.Š. is thankful for the support from the French-Slovak Co-tutelle PhD programme. We thank the Centre de Ressources Informatiques (CRI) of the University of Lille1, the Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) and the Research & Development Operational Programme funded by European Regional Development Fund (ERDF) (CGreen-I 26240120001 and CGreen-II 26240120025) for support. J.Š. and F.L. also appreciate support from PIA managed by the French National Research Agency (ANR) under Grant Agreement No. ANR-11-LABX-0005-01 called CaPPA (Chemical and Physical Properties of the Atmosphere) and also supported by the Regional Council “Nord-Pas de Calais” and the “European Funds for Regional Economic Development.”

Supplementary material

894_2017_3503_MOESM1_ESM.pdf (888 kb)
ESM 1 (PDF 888 kb)


  1. 1.
    Gutser R, Wunderlich D, Fantz U (2011) Dynamics of the transport of ionic and atomic cesium in radio frequency-driven ion sources for ITER neutral beam injection. Plasma Phys Control Fusion 53:105014. CrossRefGoogle Scholar
  2. 2.
    Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, et al. (2009) Status of the ITER heating neutral beam system. Nucl Fusion 49:045006. CrossRefGoogle Scholar
  3. 3.
    Fantz U, Franzen P, Kraus W, Berger M, Christ-Koch S, et al. (2007) Negative ion RF sources for ITER NBI: status of the development and recent achievements. Plasma Phys Contr Fusion 49:B563–B580. CrossRefGoogle Scholar
  4. 4.
    Heinemann B, Falter H, Fantz U, Franzen P, Fröschle M, et al (2009) Design of the “half-size” ITER neutral beam source for the test facility ELISE. Fusion Eng Design 84:915–922. CrossRefGoogle Scholar
  5. 5.
    Kraus W, Fantz U, Franzen P, Froschle M, Heinemann B, et al. (2012) The development of the radio frequency driven negative ion source for neutral beam injectors (invited). Rev Sci Instr 83:02B104–02B105. CrossRefGoogle Scholar
  6. 6.
    Fantz U, Franzen P, Wünderlich D (2012) Development of negative hydrogen ion sources for fusion: experiments and modelling. Chem Phys 398:7–16. CrossRefGoogle Scholar
  7. 7.
    Škoviera J, Neogrády P, Louis F, Pitoňák M, Černušák I (2017) Caesium hydride: MS-CASPT2 potential energy curves and A1Σ+→X1Σ+ absorption/emission spectroscopy. J Chem Phys 146:104304. CrossRefGoogle Scholar
  8. 8.
    Stwalley WC, Zemke WT, Yang SC (1991) Spectroscopy and structure of the alkali hydride diatomic molecules and their ions. J Phys Chem Ref Data 20:153–187. CrossRefGoogle Scholar
  9. 9.
    Olson RE, Shipsey EJ, Browne JC (1976) Theoretical cross sections for H-on-Cs ionic and neutral reactions. Phys Rev A 13:180–195. CrossRefGoogle Scholar
  10. 10.
    Karo AM, Gardner MA, Hiskes JR (1978) Abinitio MC–SCF ground-state potential energy curves for LiH, NaH, and CsH. J Chem Phys 68:1942–1950. CrossRefGoogle Scholar
  11. 11.
    Scheidt H, Spiess G, Valance A, Pradel P (1978) Determination of H+ +Cs(6s) potential from differential cross section measurements at energies 13.4-24.2 eV. J Phys B Atomic Mol Phys 11:2665–2685. CrossRefGoogle Scholar
  12. 12.
    von Szentpály L, Fuentealba P, Preuss H, Stoll H (1982) Pseudopotential calculations on Rb+ 2, Cs+ 2, RbH+, CsH+ and the mixed alkali dimer ions. Chem Phys Lett 93:555–559. CrossRefGoogle Scholar
  13. 13.
    Kimura M, Olson RE, Pascale J (1982) Molecular treatment of electron capture by protons from the ground and excited states of alkali-metal atoms. Phys Rev A 26:3113–3124. CrossRefGoogle Scholar
  14. 14.
    Valance A, Spiess G (1975) Calculation of inelastic cross sections for H++Cs → H(n=2)+Cs+. J Chem Phys 63:1487–1489. CrossRefGoogle Scholar
  15. 15.
    Sidis V, Kubach C (1978) Theoretical study of the elastic and charge exchange processes in H+ +Cs collision. J Phys B Atomic Mol Phys 11:2687–2703. CrossRefGoogle Scholar
  16. 16.
    Aquilante F, De Vico L, Ferre H, Ghigo G, Malmqvist P-Å, et al. (2010) MOLCAS 7: the next generation. J Comput Chem 31:224–247. CrossRefGoogle Scholar
  17. 17.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A 5th-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483. CrossRefGoogle Scholar
  18. 18.
    Urban M, Noga J, Cole SJ, Bartlett RJ (1985) Towards a full CCSDT model for electron correlation. J Chem Phys 83:4041–4046. CrossRefGoogle Scholar
  19. 19.
    Urban M, Černušák I, Kellö V, Noga J (1987) Methods in computational chemistry. In: Wilson SE (ed) Methods in computational chemistry. Electron correlation in atoms and molecules, vol 1. Plenum, New York, pp 117–250Google Scholar
  20. 20.
    Watts JD, Gauss J, Bartlett RJ (1993) Coupled-cluster methods with noniterative triple excitations for restricted open-Shell Hartree-Fock and other general single determinant reference functions—energies and analytical gradients. J Chem Phys 98:8718–8733. CrossRefGoogle Scholar
  21. 21.
    Knowles PJ, Hampel C, Werner HJ (1993) Coupled cluster theory for high spin, open shell reference wave functions. J Chem Phys 99:5219–5227. CrossRefGoogle Scholar
  22. 22.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schutz N (2012) MOLPRO, ver. 2012.1, a package of ab initio programs. http://www/
  23. 23.
    Ghigo G, Roos BO, Malmqvist P-Å (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149. CrossRefGoogle Scholar
  24. 24.
    Forsberg N, Malmqvist P-Å (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204. CrossRefGoogle Scholar
  25. 25.
    Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys (NY) 82:89–155. CrossRefGoogle Scholar
  26. 26.
    Hess BA (1986) Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748. CrossRefGoogle Scholar
  27. 27.
    Roos B, Malmqvist P-A (2004) Relativistic quantum chemistry: the multiconfigurational approach. Phys Chem Chem Phys 6:2919–2927. CrossRefGoogle Scholar
  28. 28.
    Roos B, Veryazov V, Widmark PO (2004) Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers. Theor Chem Accounts 111:345–351. CrossRefGoogle Scholar
  29. 29.
    Walch SP, Bauschlicher Jr CW, Siegbahn PEM, Partridge H (1982) All electron GVB/CI potential curves for the X1Σ+ g state of Cs2. Chem Phys Lett 92:54–58. CrossRefGoogle Scholar
  30. 30.
    Dunham JL (1932) The energy levels of the rotating vibrator. Phys Rev 41:721–731. CrossRefGoogle Scholar
  31. 31.
    Karwowski J, Witek HA (2016) Schrodinger equations with power potentials. Mol Phys 114:932–940. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Physical and Theoretical Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Laboratoire de PhysicoChimie des Processus de Combustion et de l’Atmosphére (PC2A), Sciences et Technologies 1Université LilleVilleneuve d’AscqFrance

Personalised recommendations