Skip to main content
Log in

Theoretical investigation on the water-assisted excited-state proton transfer of 7-azaindole derivatives: substituent effect

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2017

This article has been updated

Abstract

A systematic study on the first excited-state proton transfer (ESPT) in 2RAI-H2O (R = OH, OCH3, CN, NO2, CHO) complexes in solution were investigated at the TD-M06-2X/6-31 + G(d, p) level. The double proton transfer occurred in an asynchronous but concerted protolysis fashion no matter which substituent R was used at C2 position in pyrrole ring in the 7AI-H2O complex. The specific vibrational-mode of ESPT in the model systems was confirmed and contributed to promote the reaction rate by shortening the reaction path. The substituent effects of different groups on the ESPT thermodynamics and kinetics were discussed. It was obvious that the geometries, barrier height, asynchrony, and specific vibration-mode of excited-state proton transfer changed with the different substituent groups.

The distance between two neighboring heavy atoms such as N1-O11 (R1) and O11-N8 (R2) distances played an important role in the proton transfer reaction. The sum of the N1-O11 and O11-N8 distances in the reactant of 2RAI-H2O (R=H, OH, OCH3; CN, CHO, NO2) complexes is in the range of 5.542 Å~5.692 Å and changes along with the substituent group at C2 position in the pyrrole ring. The ESDPT barrier height and the sum of the N1-O11 and O11-N8 distances have a good correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 03 November 2017

    The original version of this article unfortunately contained a mistake in Table 3. This correct Table 3 is given below.

References

  1. Arnaut LG, Formosinho SJ (1993). J Photochem Photobiol A 75:1

    Article  CAS  Google Scholar 

  2. Formosinho SJ, Arnaut LG (1993). J Photochem Photobiol A 75:21

    Article  CAS  Google Scholar 

  3. Douhal A, Lahmani F, Zewail AH (1996). Chem. Phys. 207:477

    Article  CAS  Google Scholar 

  4. Douhal A, Kim SK, Zewail AH (1995). Nature 378:260

    Article  CAS  Google Scholar 

  5. Catalán J, del Valle JC, Kasha M (1999). Proc. Natl. Acad. Sci. 96:8338

    Article  Google Scholar 

  6. Folmer DE, Wisniewski ES, Hurley SM, Castleman Jr SW (1999). Proc. Natl. Acad. Sci. 96:12980

    Article  CAS  Google Scholar 

  7. Serrano-Andrés L, Merchán M (2006). Chem. Phys. Lett. 418:569

    Article  Google Scholar 

  8. Takeuchi S, Tahara T (2007). Proc. Natl. Acad. Sci. 104:5285

    Article  CAS  Google Scholar 

  9. Kwon OH, Zewail AH (2007). Proc. Natl. Acad. Sci. 104:8703

    Article  CAS  Google Scholar 

  10. Sekiya H, Sakota K (2008). J. Photochem. Photobiol. C 9:81

    Article  CAS  Google Scholar 

  11. Yu XF, Yamazaki S, Taketsugu T (2011). J. Chem. Theory Comput. 7:1006

    Article  CAS  Google Scholar 

  12. Ando K, Hayashi S, Kato S (2011). Phys. Chem. Chem. Phys. 13:11118

    Article  CAS  Google Scholar 

  13. Komoto Y, Sakota K, Sekiya H (2005). Chem. Phys. Lett. 406:15

    Article  CAS  Google Scholar 

  14. Catalán J, Díaz C, de Paz JLG (2006). Chem. Phys. Lett. 419:164

    Article  Google Scholar 

  15. Hsieh WT, Hsieh CC, Lai CH, Cheng YM, Ho ML, Wang KK, Lee GH, Chou PT (2008). Chem Phys Chem 9:293

    Article  CAS  Google Scholar 

  16. Hu WP, Chen JL, Hsieh CC, Chou PT (2010). Chem. Phys. Lett. 485:226

    Article  CAS  Google Scholar 

  17. Mukherjee M, Karmakar S, Chakraborty T (2012). Chem. Phys. Lett. 34:519

    Google Scholar 

  18. Yu XF, Yamazaki S, Taketsugu T (2012). J. Comput. Chem. 33:1701

    Article  CAS  Google Scholar 

  19. Gordon MS (1996). J. Phys. Chem. 100:3974

    Article  CAS  Google Scholar 

  20. Nakajima A, Hirano M, Hasumi R, Kaya K, Watanabe H, Carter C, Williamson J, Miller TA (1997). J. Phys. Chem. A 101:392

    Article  CAS  Google Scholar 

  21. Chaban GM, Gordon MS (1999). J. Phys. Chem. A 103:185

    Article  CAS  Google Scholar 

  22. Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2001). J. Chem. Phys. 114:7518

    Article  Google Scholar 

  23. Yokoyama H, Watanabe H, Omi T, Ishiuchi S, Fujii M (2001). J. Phys. Chem. A 105:9366

    Article  CAS  Google Scholar 

  24. Casadesús R, Moreno M, Lluch JM (2003). Chem. Phys. 290:319

    Article  Google Scholar 

  25. Kwon OH, Lee YS, Park HJ, Kim YH, Jang DJ (2004). Angew. Chem. Int. Ed. 43:5792

    Article  CAS  Google Scholar 

  26. Taketsugu T, Yagi K, Gordon MS (2005). Int. J. Quantum Chem. 104:758

    Article  CAS  Google Scholar 

  27. Hara A, Sakota K, Nakagaki M, Sekiya H (2005). Chem. Phys. Lett. 407:30

    Article  CAS  Google Scholar 

  28. Sakota K, Komoto Y, Nakagaki M, Ishikawa W, Sekiya H (2007). Chem. Phys. Lett. 435:1

    Article  CAS  Google Scholar 

  29. Sakota K, Inoue N, Komoto Y, Sekiya H (2007). J. Phys. Chem. A 111:4596

    Article  CAS  Google Scholar 

  30. Kina D, Nakayama A, Noro T, Taketsugu T, Gordon MS (2008). J. Phys. Chem. A 112:9675

    Article  CAS  Google Scholar 

  31. Koizumi Y, Jouvet C, Tsuji N, Ishiuchi S, Dedonder-Lardeux C, Fujii M (2008). J. Chem. Phys. 129:104311

    Article  Google Scholar 

  32. Sakota K, Komure N, Ishikawa W, Sekiya H (2009). J. Chem. Phys. 130:224307

    Article  Google Scholar 

  33. Duong MPT, Kim YH (2010). J. Phys. Chem. A 114:3403

    Article  CAS  Google Scholar 

  34. Sakota K, Jouvet C, Dedonder C, Fujii M, Sekiya H (2010). J. Phys. Chem. A 114:11161

    Article  CAS  Google Scholar 

  35. Fang H, Kim YH (2011). J. Chem. Theory Comput. 7:642

    Article  CAS  Google Scholar 

  36. Pino GA, Alata I, Dedonder C, Jouvet C, Sakota K, Sekiya H (2011). Phys. Chem. Chem. Phys. 13:6325

    Article  CAS  Google Scholar 

  37. Fang H, Kim YH (2011). J. Phys. Chem. A 115:13743

    Article  CAS  Google Scholar 

  38. Daeungern R, Kungwan N, Woschann P, Aquino AJA, Lischka H, Barbatti M (2011). J. Phys. Chem. A 115:14129

    Article  Google Scholar 

  39. Chachisvilis M, Fiebig T, Douhal A, Zewail AH (1998). J. Phys. Chem. A 102:669

    Article  CAS  Google Scholar 

  40. Fiebig T, Chachisvilis M, Manger M, Zewial AH, Douhal A, Garciaochoa I, de La Hoz AA (1999). J. Phys. Chem. A 103:7419

    Article  CAS  Google Scholar 

  41. Folmer DE, Poth L, Wisniewski ES, Castleman Jr AW (1998). Chem. Phys. Lett. 287:1

    Article  CAS  Google Scholar 

  42. Folmer DE, Wisniewski ES, Castleman Jr AW (2000). Chem. Phys. Lett. 318:637

    Article  CAS  Google Scholar 

  43. Takeuchi S, Tahara T (1997). Chem. Phys. Lett. 277:340

    Article  CAS  Google Scholar 

  44. Takeuchi S, Tahara T (1998). J. Phys. Chem. A 102:7740

    Article  CAS  Google Scholar 

  45. Takeuchi S, Tahara T (2001). Chem. Phys. Lett. 347:108

    Article  CAS  Google Scholar 

  46. Taylor CA, El-Bayoumi MA, Kasha M (1969). Proc. Natl. Acad. Sci. 63:253

    Article  CAS  Google Scholar 

  47. Catalán J, Perez P, del Valle JC, de Paz JLG, Kasha M (2004). Proc. Natl. Acad. Sci. 101:419

    Article  Google Scholar 

  48. Catalán J, de Paz JLG (2005). J. Chem. Phys. 123:114302

    Article  Google Scholar 

  49. Catalán J (2010). J. Phys. Chem. A 114:5666

    Article  Google Scholar 

  50. Sakota K, Hara A, Sekiya H (2004). Phys. Chem. Chem. Phys. 6:32

    Article  CAS  Google Scholar 

  51. Sekiya H, Sakota K (2006). Bull. Chem. Soc. Jpn. 79:373

    Article  CAS  Google Scholar 

  52. Fang H (2015). Theor. Chem. Acc. 134:142

    Article  Google Scholar 

  53. Hung VP, Robert SP, Audrey GR, Samuel JD, Houk KN (2014). J. Am. Chem. Soc. 136:2397

    Article  Google Scholar 

  54. Chen YL, Wu DY, Tian ZQ (2016). J. Phys. Chem. A 120:4049

    Article  CAS  Google Scholar 

  55. Chou PT, Yu WS, Wei CY, Cheng YM, Yang CY (2001). J. Am. Chem. Soc. 123:3599

    Article  CAS  Google Scholar 

  56. Tseng MY, Hung HY, Sung KS (2015). J. Phys. Chem. A 119:3905

    Article  CAS  Google Scholar 

  57. Poenitzsch VZ, Winters DC, Xie H, Dieckmann GR, Dalton AB, Musselman IH (2007). J. Am. Chem. Soc. 129:14724

    Article  CAS  Google Scholar 

  58. Tseng HW, Liu JQ, Chen YA, Chao CM, Liu KM, Chen CL, Lin TC, Hung CH, Chou YL, Lin TC, Wang TL, Chou PT (2015). J. Phys. Chem. Lett. 6:1477

    Article  CAS  Google Scholar 

  59. Chen YA, Meng FY, Hsu YH, Hung CH, Chen CL, Chung KY, Tang WF, Hung WY, Chou PT (2016). Chem. Eur. J. 22:14688

    Article  CAS  Google Scholar 

  60. Zhao Y, Truhlar DG (2008). Theor. Chem. Accounts 120:215

    Article  CAS  Google Scholar 

  61. Frisch MJ, Truck GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford,

    Google Scholar 

  62. Cancès E, Mennucci B, Tomasi J (1997). J. Chem. Phys. 107:3032

    Article  Google Scholar 

  63. Cossi M, Barone V, Mennucci B, Tomasi J (1998). Chem. Phys. Lett. 286:253

    Article  CAS  Google Scholar 

  64. Mennucci B, Tomasi J (1997). J. Chem. Phys. 106:5151

    Article  CAS  Google Scholar 

  65. Glendening ED (2005). J. Phys. Chem. A 109:11936

    Article  CAS  Google Scholar 

  66. Glendening ED, Landis CR, Weinhold F (2013). J. Comput. Chem. 35:1429

    Article  Google Scholar 

  67. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge, University Press, Cambridge,

    Book  Google Scholar 

  68. Mohammed OF, Pines D, Nibbering ETJ, Pines E (2006). Angew. Chem. Int. Ed. 46:1458

    Article  Google Scholar 

  69. Yi J, Fang H (2017). Photochem. Photobiol. https://doi.org/10.1111/php.12839

  70. Hansch C, Leo A, Taft RW (1991). Chem. Rev. 91:165

    Article  CAS  Google Scholar 

  71. Brown ID (1992). Acta Cryst B 48:553

    Article  Google Scholar 

  72. Limbach HH, Pietrzak M, Benedict H, Tolstoy PM, Golubev NS, Denisov GS (2004). J. Mol. Struct. 706:115

    Article  CAS  Google Scholar 

  73. Limbach HH, Lopez JM, Kohen A (2006). Philos. Trans. R. Soc. B 361:1399

    Article  CAS  Google Scholar 

  74. Limbach HH (2007) In: Schowen RL, Klinman JP, Hynes JT, Limbach HH (eds) In hydrogen-transfer reactions. Wiley, Weinheim, Chapter 6, p. 135221

    Google Scholar 

  75. Fang WH (1998). J. Am. Chem. Soc. 120:7568

    Article  CAS  Google Scholar 

  76. Fang WH (1999). J. Am. Chem. Soc. 103:5567

    CAS  Google Scholar 

  77. Limbach HH, Schowen KB, Schowen RL (2010). J. Phys. Org. Chem. 23:586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (21403114), the Natural Science Foundation of Jiangsu province (BK20140970), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, state Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Fang.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00894-017-3506-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Fang, H. Theoretical investigation on the water-assisted excited-state proton transfer of 7-azaindole derivatives: substituent effect. J Mol Model 23, 312 (2017). https://doi.org/10.1007/s00894-017-3487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3487-5

Keywords

Navigation