Computational study on acetophenone in amorphous polyethylene

Abstract

Polyethylene (PE) is widely used as an electrical insulating material. Acetophenone (AP) is a major residue in PE and is considered one of the causes of insulation deterioration. However, the physicochemical explanation of the influence of AP is still unknown. Therefore, in the present study, the behavior of AP molecules in amorphous PE was investigated using molecular dynamics (MD) simulations and quantum chemical calculation. First, the basic properties of the AP molecule were evaluated from the viewpoint of molecular electrostatic potential (MEP), molecular orbitals, and energy levels. Subsequently, an amorphous PE system containing AP molecules was studied using MD simulations. The results clearly indicate that AP does not greatly change the density and radius of gyration of amorphous PE. Quantum computations were performed using a part of the structure obtained from the MD simulations, suggesting that AP acts as a trap site in amorphous PE. It was also revealed that under the external electric field, the total density of state (DOS) changes with a dependence on the applied direction. Results of these calculations help in explaining previous experimental results.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Lim FN, Fleming RJ, Navbour RD (1999) Space charge accumulation in power cable XLPE insulation. IEEE Trans Dielectr Electr Insul 6:273–281

    CAS  Article  Google Scholar 

  2. 2.

    Dakka MA, Bulinski A, Bamji S (2004) Space charge development and breakdown in XLPE under DC field. IEEE Trans Dielectr Electr Insul 11:41–48

    Article  Google Scholar 

  3. 3.

    Montanari GC, Laurent C, Teyssedre G, Campus A, Nilsson UH (2005) From LDPE to XLPE: investigating the change of electrical properties. Part I: space charge, conduction and lifetime. IEEE Trans Dielectr Electr Insul 12:438–446

    CAS  Article  Google Scholar 

  4. 4.

    Ieda M (1980) Dielectric breakdown process of polymers. IEEE Trans Electr Insul EI-15:206–224

    CAS  Article  Google Scholar 

  5. 5.

    Takada T (1986) Space charge formation in dielectrics. IEEE Trans Electr Insul EI-21:873–879

    CAS  Article  Google Scholar 

  6. 6.

    Takada T, Maeno T, Kushibe H (1987) An electric stress-pulse technique for the measurement of charges in a plastic plate irradiated by an electron beam. IEEE Trans Electr Insul EI-22:497–501

    CAS  Article  Google Scholar 

  7. 7.

    See A, Dissado LA, Fothergill JC (2001) Electric field criteria for charge packet formation and movement in XLPE. IEEE Trans Dielectr Electr Insul 8:859–866

    CAS  Article  Google Scholar 

  8. 8.

    Zhou C, Chen G (2017) Space charge and AC electrical breakdown strength in polyethylene. IEEE Trans Dielectr Electr Insul 24:599–566

    Google Scholar 

  9. 9.

    Hirai N, Minami R, Tanaka T, Ohki Y (2003) Chemical group in crosslinking byproducts responsible for charge trapping in polyethylene. IEEE Trans Dielectr Electr Insul 10:320–330

    CAS  Article  Google Scholar 

  10. 10.

    Hozumi N, Takeda T, Suzuki H, Okamoto T (1998) Space charge behavior in XLPE cable insulation under 0.2-1.2 MV/cm dc fields. IEEE Trans Dielectr Electr Insul 5:82–90

    CAS  Article  Google Scholar 

  11. 11.

    Teyssedre G, Laurent C, Aslanides A, Quirke N, Dissado LA, Montanari GC, Campus A, Martinotto L (2001) Deep trapping centers in crosslinked polyethylene investigated by molecular modeling and luminescence techniques. IEEE Trans Dielectr Electr Insul 8:744–752

    CAS  Article  Google Scholar 

  12. 12.

    >Maeno Y, Hirai N, Ohki Y, Tanaka T, Okashita M, Maeno T (2005) Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene. IEEE Trans Dielectr Electr Insul 12:90–97

    CAS  Article  Google Scholar 

  13. 13.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. (2009) Gaussian09 revision C.01. Gaussian Inc, Wallingford

  14. 14.

    Chandra U, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  Google Scholar 

  15. 15.

    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  Article  Google Scholar 

  16. 16.

    Darden T, York D, Pedersen L (1993) Particle mesh ewald an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    CAS  Article  Google Scholar 

  17. 17.

    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    CAS  Article  Google Scholar 

  18. 18.

    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  19. 19.

    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    CAS  Article  Google Scholar 

  20. 20.

    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    CAS  Article  Google Scholar 

  21. 21.

    Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  22. 22.

    O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  23. 23.

    Fukuda M, Kuwajima S (1997) Molecular-dynamics simulation of moisture diffusion in polyethylene beyond 10 ns duration. J Chem Phys 107:2149–2159

    CAS  Article  Google Scholar 

  24. 24.

    Lu H, Zhou Z, Hao T, Ye X, Ne Y (2015) Temperature dependence of structural properties and chain configurational study: a molecular dynamics simulation of polyethylene chains. Macromol Theory Simul 24:335–343

    CAS  Article  Google Scholar 

  25. 25.

    Iwata S (2017) Molecular dynamics simulation of effect of glycerol monostearate on amorphous polyethylene in the presence of water. J Mol Model 23:115

    Article  Google Scholar 

  26. 26.

    Takada T, Hayase Y, Miyake H, Tanaka Y, Yoshida M (2012) Study on electric charge trapping in cross-linking polyethylene and byproducts by using molecular orbital calculation. IEEJ Trans Fundam Mater 132:129–135 (in Japanese)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26630337. The DFT calculations were performed by using the large-scale supercomputer system of the Institute for Information Management and Communication of Kyoto University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shinya Iwata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwata, S., Uehara, H. & Takada, T. Computational study on acetophenone in amorphous polyethylene. J Mol Model 23, 274 (2017). https://doi.org/10.1007/s00894-017-3447-0

Download citation

Keywords

  • Molecular dynamics simulation
  • Density functional theory
  • Amorphous polyethylene
  • Acetophenone
  • External electric field