Skip to main content

Advertisement

Log in

Ensemble-based virtual screening: identification of a potential allosteric inhibitor of Bcr-Abl

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ensemble-based virtual screening using different conformations of a target protein is gaining popularity, as it can leverage information from target flexibility for effective lead identification. In this paper, molecular dynamics simulation followed by RMSD-based clustering was employed to generate and choose distinct conformations of Bcr-Abl. Three representative structures from the most-populated clusters along with the crystal structure conformation (PDBID: 3K5V) were used to perform docking-based virtual screening of 14,400 compounds (in the Maybridge database) in order to identify potential allosteric site binders. Seven compounds found as hits in at least three of the four virtual screenings had higher Glide docking scores than the co-crystallized allosteric inhibitor GNF-2. Detailed computational analyses of the seven hits identified SEW02675 (ΔG bind = −164.92 kJ/mol with the wild-type (wt) Bcr-Abl and −167.37 kJ/mol with the T334I Bcr-Abl mutant) as a better allosteric site binder with both the wt and the mutant Bcr-Abl protein than the reference allosteric inhibitor GNF-2 (ΔG bind = −103.12 with wt and −142.96 kJ/mol with T334I). Moreover, the presence of SEW02675 in the allosteric site enhanced the binding of imatinib (ΔG bind = −367.58 with wt and −294.56 kJ/mol with T334I) to the ATP sites of the wt and the mutant Bcr-Abl. However, when GNF-2 was present in the allosteric site, the binding of imatinib (ΔG bind = −351.76 with wt and −273.94 kJ/mol with T334I) to the ATP site was weaker. The in silico findings suggest that SEW02675 could be used in combination with imatinib to treat chronic myeloid leukemia, and that it could help to overcome resistance due to T334I Bcr-Abl mutation.

Virtual screening strategy to identify allosteric inhbitors of Bcr-Abl for the treatment of Chronic myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–b
Fig. 4
Fig. 5a–b
Fig. 6a–b
Fig. 7a–b

Similar content being viewed by others

References

  1. Xia G, Xue M, Liu L et al (2011) Potent and novel 11β-HSD1 inhibitors identified from shape and docking based virtual screening. Bioorg Med Chem Lett 21:5739–5744. doi:10.1016/j.bmcl.2011.08.019

    Article  CAS  Google Scholar 

  2. Bottegoni G, Rocchia W, Rueda M et al (2011) Systematic exploitation of multiple receptor conformations for virtual ligand screening. PLoS One 6(5):e18845. doi:10.1371/journal.pone.0018845

    Article  CAS  Google Scholar 

  3. Osguthorpe DJ, Sherman W, Hagler AT (2012) Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80:182–193. doi:10.1111/j.1747-0285.2012.01396.x

    Article  CAS  Google Scholar 

  4. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184. doi:10.1016/j.sbi.2008.01.004

    Article  CAS  Google Scholar 

  5. Lin JH, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633. doi:10.1021/ja0260162

    Article  CAS  Google Scholar 

  6. Wong CF, Kua J, Zhang Y et al (2005) Molecular docking of balanol to dynamics snapshots of protein kinase A. Proteins 61:850–858. doi:10.1002/prot.20688

    Article  CAS  Google Scholar 

  7. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J. Mol. Biol. 337:209–225. doi:10.1016/j.jmb.2004.01.003

    Article  CAS  Google Scholar 

  8. Amaro RE, Li WW (2010) Emerging methods for ensemble-based virtual screening. Curr Top Med Chem 10:3–13. doi:10.2174/156802610790232279

    Article  CAS  Google Scholar 

  9. Meagher KL, Carlson HA (2004) Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case. J Am Chem Soc 126:13276–13281. doi:10.1021/ja0469378

    Article  CAS  Google Scholar 

  10. Carlson HA, Masukawa KM, Rubins K et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114. doi:10.1021/jm990322h

    Article  CAS  Google Scholar 

  11. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44. doi:10.1038/nrm1280

    Article  CAS  Google Scholar 

  12. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    CAS  Google Scholar 

  13. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830. doi:10.1126/science.2406902

    Article  CAS  Google Scholar 

  14. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282. doi:10.1016/S0092-8674(02)00741-9

    Article  CAS  Google Scholar 

  15. Battistutta R, De Moliner E, Sarno S et al (2001) Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci 10:2200–2206. doi:10.1110/ps.19601

    Article  CAS  Google Scholar 

  16. Shah NP, Nicoll JM, Nagar B et al (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125. doi:10.1016/S1535-6108(02)00096-X

    Article  CAS  Google Scholar 

  17. Skora L, Mestan J, Fabbro D et al (2013) NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proc Natl Acad Sci 110:E4437–E4445. doi:10.1073/pnas.1314712110

    Article  CAS  Google Scholar 

  18. O’Hare T, Eide CA, Deininger MW (2008) New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opin. Investig. Drugs 17:865–878. doi:10.1517/13543784.17.6.865

    Article  Google Scholar 

  19. O’Hare T, Shakespeare WC, Zhu X et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412. doi:10.1016/j.ccr.2009.09.028

    Article  Google Scholar 

  20. Deng X, Okram B, Ding Q et al (2010) Expanding the diversity of allosteric Bcr-Abl inhibitors. J Med Chem 53:6934–6946. doi:10.1021/jm100555f

    Article  CAS  Google Scholar 

  21. Gray NS, Fabbro D (2014) Discovery of allosteric Bcr-Abl inhibitors from phenotypic screen to clinical candidate. Methods Enzymol. 548:173–188. doi:10.1016/B978-0-12-397918-6.00007-0

    Article  CAS  Google Scholar 

  22. Deininger MWN, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 55:401–423. doi:10.1124/pr.55.3.4

    Article  CAS  Google Scholar 

  23. Deininger M, Buchdunger E, Druker BJ (2005) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105:2640–2653. doi:10.1182/blood-2004-08-3097

    Article  CAS  Google Scholar 

  24. Zhang J, Adrián FJ, Jahnke W et al (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506. doi:10.1038/nature08675

    Article  CAS  Google Scholar 

  25. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. doi:10.1007/s10822-013-9644-8

    Article  CAS  Google Scholar 

  26. Sarvagalla S, Singh VK, Ke Y-Y et al (2014) Identification of ligand efficient, fragment-like hits from an HTS library: structure-based virtual screening and docking investigations of 2H- and 3H-pyrazolo tautomers for Aurora kinase a selectivity. J Comput Aided Mol Des 29:89–100. doi:10.1007/s10822-014-9807-2

    Article  Google Scholar 

  27. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196. doi:10.1021/jm051256o

    Article  CAS  Google Scholar 

  28. Bochevarov AD, Harder E, Hughes TF et al (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142. doi:10.1002/qua.24481

    Article  CAS  Google Scholar 

  29. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  30. Huang W, Lin Z, Van Gunsteren WF (2011) Validation of the GROMOS 54A7 force field with respect to β-peptide folding. J Chem Theory Comput 7:1237–1243. doi:10.1021/ct100747y

    Article  CAS  Google Scholar 

  31. Ke Y-Y, Singh VK, Coumar MS et al (2015) Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep 5:11702. doi:10.1038/srep11702

    Article  CAS  Google Scholar 

  32. Cocco S, Monasson R, Weigt M (2013) From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction. PLoS Comput Biol 9:e1003176. doi:10.1371/journal.pcbi.1003176

    Article  CAS  Google Scholar 

  33. Reddy MR, Reddy CR, Rathore RS et al (2013) Free energy calculations to estimate ligand-binding affinities in structure-based drug design. Curr Pharm Des 20:3323–3337. doi: 10.2174/13816128113199990604

    Article  Google Scholar 

  34. Gilson MK, Zhou H-X (2007) Calculation of protein–ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42. doi:10.1146/annurev.biophys.36.040306.132550

    Article  CAS  Google Scholar 

  35. Dubey KD, Ojha RP (2012) Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex. J Mol Model 18:1679–1689. doi:10.1007/s00894-011-1199-9

    Article  Google Scholar 

  36. Paissoni C, Spiliotopoulos D, Musco G, Spitaleri A (2014) GMXPBSA 2.1: a GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput Phys Commun 186:105–107. doi:10.1016/j.cpc.2014.06.019

    Article  Google Scholar 

  37. Cheng LS, Amaro RE, Xu D et al (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51:3878–3894. doi:10.1021/jm8001197

    Article  CAS  Google Scholar 

  38. Joshi M, Rajpathak SN, Narwade SC, Deobagkar D (2016) Ensemble-based virtual screening and experimental validation of inhibitors targeting a novel site of human DNMT1. Chem Biol Drug Des 88:5–16. doi:10.1111/cbdd.12741

    Article  CAS  Google Scholar 

  39. Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084. doi:10.1021/jm049756p

    Article  CAS  Google Scholar 

  40. Ai C, Li Y, Wang Y et al (2010) Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors. J Comput Chem 31:1822–1831. doi:10.10021/jcc.21455

    CAS  Google Scholar 

  41. Queiroz AN, Gomes BAQ, Moraes WM, Borges RS (2009) A theoretical antioxidant pharmacophore for resveratrol. Eur J Med Chem 44:1644–1649. doi:10.1016/j.ejmech.2008.09.023

    Article  CAS  Google Scholar 

  42. Tunç T, Koç Y, Açık L et al (2015) DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor. Spectrochim Acta A 136:1418–1427. doi:10.1016/j.saa.2014.10.030

    Article  Google Scholar 

  43. Sakkiah S, Lee KW (2012) Pharmacophore-based virtual screening and density functional theory approach to identifying novel butyrylcholinesterase inhibitors. Acta Pharmacol Sin 33:964–978. doi:10.1038/aps.2012.21

    Article  CAS  Google Scholar 

  44. Druker BJ, Guilhot F, O’Brien SG, et al. (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417. doi:10.1056/NEJMoa062867

    Article  CAS  Google Scholar 

  45. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425. doi:10.1002/prot.340170408

    Article  CAS  Google Scholar 

  46. Lee TS, Potts SJ, Kantarjian H et al (2008) Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Cancer 112:1744–1753. doi:10.1002/cncr.23355

    Article  CAS  Google Scholar 

  47. Singh VK, Chang H-H, Kuo C-C et al (2016) Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. J Biomol Struct Dyn 1102:1–16. doi:10.1080/07391102.2016.1196462

    Google Scholar 

Download references

Acknowledgements

A fellowship from Pondicherry University to VKS to pursue a Ph.D. and financial support from the University Grants Commission (F. no. 41-981/2012, SR), the Department of Biotechnology (BT/246/NE/TBP/2011/77), and the Science and Engineering Research Board (SR/FT/LS-64/2011), Govt. of India, to MSC are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohane Selvaraj Coumar.

Electronic supplementary material

ESM 1

(PDF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Coumar, M.S. Ensemble-based virtual screening: identification of a potential allosteric inhibitor of Bcr-Abl. J Mol Model 23, 218 (2017). https://doi.org/10.1007/s00894-017-3384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3384-y

Keywords

Navigation