Skip to main content
Log in

Perturbation of hydrogen bonding in hydrated pyrrole-2-carboxaldehyde complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interaction of external water molecules with hydrated pyrrole-2-carboxaldehyde PCL/(H2O) n complexes was investigated. The work was supported by both theoretical [DFT/TD-DFT methods using 6-311G++(d,p) basis set in the ground (S0) and excited (S1, S2, S3)states] and experimental [UV-Vis, FTIR and Raman] verification. The focus of the present work was on the weak intermolecular O–H⋯O, N–H⋯O–H hydrogen bonded interaction (IerHB) between PCL and external water molecules, and the influence of increasing the number of water molecules to form hydrated PCL/(H2O)n complexes. Effects were observed on different vibrational normal modes and on electronic transition levels. A hydrogen-bonded network of water induces a shift to higher energy in certain normal modes of PCL to form stable PCL/(H2O)n complexes by lowering the barrier energy. Potential energy distribution (PED) analysis indicates a significant charge transfer from PCL to water by creating a water bridge. Hydrogen bonding effects account for the substantial red shift and broadness in νNH, νCO vibrational modes. Water rearrangement turns out to be the main driving force for hydrated complex formation.

Stability of PCL/(H2O)4 hydarted complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahoo D, Adhikary T, Chowdhury P, Chakravorti S (2008) Theoretical study of excited state proton transfer in pyrrole-2-carboxylic acid. Molecular Phys 106:1441–1449

    Article  CAS  Google Scholar 

  2. Mathew CV (2006) An efficient synthesis of highly substituted pyrroles from Β- oxodithiocarboxylates. Tetrahedron 62:1708–1716

    Article  CAS  Google Scholar 

  3. Rice CA, Dauster I, Suhm MA (2007) Infrared spectroscopy of pyrrole-2-carboxaldehyde and its dimer: a planar Beta-sheet peptide model? J Phys Chem 126:134313

    Article  Google Scholar 

  4. Subhasis P, Chowdhury P, Chakravorti S (2004) Modulation of complexation of 4 (1H-pyrrole 1-yl) benzoic acid with β-cyclodextrin in aqueous and non-aqueous environments. Chem Phys Lett 393:409–415

    Article  Google Scholar 

  5. Leiserowitz L (1976) Structural crystallography and crystal chemistry. Acta Cryst B32:775–802

    Article  CAS  Google Scholar 

  6. Singla N, Chowdhury P (2014) Nature of stokes shifted dual fluorescence in 2-acetyl-pyrrole: tuning between intramolecular hydrogen bonding and ESIPT pathways. Chem Phys Lett 612:25–32

    Article  CAS  Google Scholar 

  7. Dubis AT, Grabowski SJ, Romanowska DB, Misiaszek T, Lestzczynski J (2002) Pyrrole-2-carboxylic acid and its dimers: molecular structures and vibrational spectrum. J Phys Chem A 106:10613–10621

    Article  CAS  Google Scholar 

  8. Kumar N, Chakravorti S, Chowdhury P (2008) Experimental investigation by UV-VIS and IR spectroscopy to reveal electronic and vibrational properties of pyrrole-2-carboxyldehyde: a theoretical approach. J Mol Struct 891:351–356

    Article  CAS  Google Scholar 

  9. Singla N, Chowdhury P (2013) Excited state behavior of pyrrole-2-carboxyldehyde: theoretical and experimental study. Spectrochim Acta A Mol Biomol Spectrosc 112:125–131

    Article  CAS  Google Scholar 

  10. Pauling L, Marsh RE (1952) The structures of chlorine hydrate. Proc Natl Acad Sci USA 38:112–118

    Article  CAS  Google Scholar 

  11. Szatyłowicz H, Sosnowska NS (2010) Characterizing the strength of individual hydrogen bonds in DNA base pairs. J Chem Inf Model 50:2151–2161

    Article  Google Scholar 

  12. Yang Y, Arai T (1998) Novel photochemical behavior of olefin with a pyrrole ring and a phenanthroline ring controlled by hydrogen bonding. Tetrahedron Lett 39:2617–2620

    Article  CAS  Google Scholar 

  13. Marstokk KM, Mollendal H (1974) Microwave spectrum, conformation, intramolecular hydrogen bond, and dipole moment of pyrrole-2-carboxaldehyde. J Mol Struct 23:93–101

    Article  CAS  Google Scholar 

  14. Giuliano BM, Reva I, Fausto R (2010) Infrared spectra and photochemistry of matrix-isolated pyrrole-2-carbaldehyde. J Phys Chem A 114:2506–2517

    Article  CAS  Google Scholar 

  15. Dubis AT (2014) Conformational preferences of 2-acylpyrroles in light of FT-IR and DFT studies. J Phys Chem Biophys 4:2161–0398

    Article  Google Scholar 

  16. Nolasco MM, Amado AM, Ribeiro-Claro PJ (2006) Computationally-assisted approach to the vibrational spectra of molecular crystals: study of hydrogen-bonding and pseudo-polymorphism. Chem Phys Chem 7:2150–2161

    Article  CAS  Google Scholar 

  17. Frisch MJ et al (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford,

    Google Scholar 

  18. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B37:785–789

    Article  Google Scholar 

  21. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  22. Robinson D, Besley NA, Lunt EA, O’Shea P, Hirst JD (2009) Electronic structure of 5-hydroxyindole: from gas phase to explicit solvation. J Phys Chem B 113:2535–2541

    Article  CAS  Google Scholar 

  23. Dennington R, Keith T, Millam J (2007) Gauss View, version 4.1.2; Semichem, Shawnee Mission, KS

  24. Jamroź MH (2004) Vibrational Energy Distribution Analysis VEDA 4, Warsaw

  25. Gordon JJH (1996) Understanding the hydrogen bond using quantum chemistry. Acc Chem Res 29:536–543

    Article  CAS  Google Scholar 

  26. Esseffar M, Firdoussi AE, Bouab W, Abboud JL, Mó O, Yáñez M (2009) Combined experimental and theoretical study on hydrogen-bonded complexes between cyclic ketones, lactones, and lactams with 3, 4-dinitrophenol. J Phys Chem A 113:14711–14717

    Article  CAS  Google Scholar 

  27. Pal S, Kundu TK (2013) Stability analysis and frontier orbital study of different glycol and water complex. ISRN Phys Chem 2013:1–16

    Article  Google Scholar 

  28. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  30. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14:278–294

    Article  CAS  Google Scholar 

  31. Keresztury G (2002) Raman spectroscopy: theory. In: Chalmers JM, Griffith PR (eds) Handbook of vibrational spectroscopy. Wiley, New York

  32. Arjunan V, Puviarasan N, Mohan S (2006) Fourier transform infrared and Raman spectral investigations of 5-aminoindole. Spectrochim Acta A 64:233–239

    Article  CAS  Google Scholar 

  33. Singla N, Kumar R, Pathak A, Chowdhury P (2013) Excited state behavior of pyrrole 2-carboxyldehyde: theoretical and experimental study Spectrochim Acta A 112:125–131

    Article  CAS  Google Scholar 

  34. Chandra S, Saleem H, Sundaraganesan N, Sebastian S (2009) The spectroscopic FT-IR gas phase, FT-IR, FT-Raman, polarizabilities analysis of Naphthoic acid by density functional methods. Spectrochim Acta A 74:704–713

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papia Chowdhury.

Electronic supplementary material

ESM 1

(DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M., Chowdhury, P. Perturbation of hydrogen bonding in hydrated pyrrole-2-carboxaldehyde complexes. J Mol Model 23, 216 (2017). https://doi.org/10.1007/s00894-017-3380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3380-2

Keywords

Navigation