Skip to main content
Log in

Functional annotation of a novel toxin–antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Toxin–antitoxin (TA) complexes play an important role in stress responses and programmed cell death in bacteria. The RelB-RelE toxin antitoxin system is well studied in Escherichia coli. In this study, we used combined in silico and in vitro approaches to study a novel Xn-RelT toxin from Xenorhabdus nematophila bearing its own antitoxin Xn-RelAT—a RelB homolog of E. coli. The structure for this toxin–antitoxin pair is yet unknown. We generated homology-based models of X. nematophila RelT toxin and antitoxin. The deduced models were further characterized for protein–nucleic acid, protein–protein interactions and gene ontology. A detrimental effect of recombinant Xn-RelT on host E. coli was determined through endogenous toxicity assay. When expressed from a isopropyl β-d-1-thiogalactopyranoside-regulated LacZ promoter, Xn-RelT toxin showed a toxic effect on E. coli cells. These observations imply that the conditional cooperativity governing the Xn-RelT TA operon in X. nematophila plays an important role in stress management and programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4a,b
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Melderen L (2010) Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 13:781–785. doi:10.1016/j.mib.2010.10.006

    Article  CAS  Google Scholar 

  2. Holcík M, Iyer VN (1997) Conditionally lethal genes associated with bacterial plasmids. Microbiology 143(Pt 1):3403–3416. doi:10.1099/00221287-143-11-3403

    Article  Google Scholar 

  3. Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems. J Bacteriol 189:6089–6092. doi:10.1128/JB.00958-07

    Article  CAS  Google Scholar 

  4. Gerdes K, Christensen SK, Løbner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382. doi:10.1038/nrmicro1147

    Article  CAS  Google Scholar 

  5. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. doi:10.1146/annurev.micro.112408.134306

    Article  CAS  Google Scholar 

  6. Hallez R, Geeraerts D, Sterckx Y, et al (2010) New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 76:719–732. doi:10.1111/j.1365-2958.2010.07129.x

    Article  CAS  Google Scholar 

  7. de la Hoz AB, Ayora S, Sitkiewicz I, et al (2000) Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci USA 97:728–733

    Article  Google Scholar 

  8. Leplae R, Geeraerts D, Hallez R, et al (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525. doi:10.1093/nar/gkr131

    Article  CAS  Google Scholar 

  9. Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416–1422. doi:10.1128/JB.00233-09

    Article  CAS  Google Scholar 

  10. Makarova KS, Wolf YI, Koonin EV (2009) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4:19. doi:10.1186/1745-6150-4-19

    Article  Google Scholar 

  11. Christensen SK, Mikkelsen M, Pedersen K, Gerdes K (2001) RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci USA 98:14328–14333. doi:10.1073/pnas.251327898

    Article  CAS  Google Scholar 

  12. Bailey SES, Hayes F (2009) Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 191:762–772. doi:10.1128/JB.01331-08

    Article  CAS  Google Scholar 

  13. Mutschler H, Gebhardt M, Shoeman RL, Meinhart A (2011) A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 9:e1001033. doi:10.1371/journal.pbio.1001033

    Article  CAS  Google Scholar 

  14. Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065. doi:10.1099/00221287-128-12-3061

    CAS  Google Scholar 

  15. Herbert EE, Goodrich-Blair H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 5:634–646. doi:10.1038/nrmicro1706

    Article  CAS  Google Scholar 

  16. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. doi:10.1146/annurev.en.38.010193.001145

    Article  Google Scholar 

  17. Singh J, Chaudhary RK, Gautam P, et al (2012) Insilico analysis of novel Relb, Rele and Mazf toxin-antitoxin Homolog’s from the genome of Xenorhabdus nematophila. Am J Bioinforma Res 2:21–32

    Article  Google Scholar 

  18. Rathore JS, Gautam LK (2014) Expression, purification, and functional analysis of novel RelE operon from X. Nematophila. ScientificWorldJournal 2014:428159. doi:10.1155/2014/428159

    Article  Google Scholar 

  19. Gautam LK, Yennamalli RM, Rathore JS (2016) Implication on the function of novel Xn-relE toxin structure of Xenorhabdus nematophila using Homology modeling. Curr Bioinform (in press). doi: 10.2174/1574893611666160620093520

  20. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi:10.1186/1471-2105-9-40

    Article  Google Scholar 

  21. Laskowski RA, MacArthur MW, Moss DS, et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  22. Schrödinger, LLC (2015) The {PyMOL} Molecular graphics system, Version∼1.8

  23. Ashburner M, Ball CA, Blake JA, et al (2000) Gene ontology: tool for the unification of biology. The Gene ontology consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  CAS  Google Scholar 

  24. Boggild A, Sofos N, Andersen KR, et al (2012) The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20:1641–1648. doi:10.1016/j.str.2012.08.017

    Article  Google Scholar 

  25. Li G-Y, Zhang Y, Inouye M, Ikura M (2009) Inhibitory mechanism of Escherichia coli RelE-RelB toxin-antitoxin module involves a helix displacement near an mRNA interferase active site. J Biol Chem 284:14628–14636. doi:10.1074/jbc.M809656200

    Article  CAS  Google Scholar 

  26. Lovell SC, Davis IW, Arendall WB, et al (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50:437–450. doi:10.1002/prot.10286

    Article  CAS  Google Scholar 

  27. Neubauer C, Gao Y-G, Andersen KR, et al (2009) The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139:1084–1095. doi:10.1016/j.cell.2009.11.015

    Article  CAS  Google Scholar 

  28. Kamada K, Hanaoka F (2005) Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol Cell 19:497–509. doi:10.1016/j.molcel.2005.07.004

    Article  CAS  Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC, et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  30. Schreiter ER, Wang SC, Zamble DB, Drennan CL (2006) NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proc Natl Acad Sci USA 103:13676–13681. doi:10.1073/pnas.0606247103

    Article  CAS  Google Scholar 

  31. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976. doi:10.1093/nar/gki201

    Article  CAS  Google Scholar 

  32. Makarova KS, Grishin NV, Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22:2581–2584. doi:10.1093/bioinformatics/btl418

    Article  CAS  Google Scholar 

  33. Yamaguchi Y, Park J-H, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79. doi:10.1146/annurev-genet-110410-132412

    Article  CAS  Google Scholar 

  34. Christensen-Dalsgaard M, Overgaard M, Winther KS, Gerdes K (2008) RNA decay by messenger RNA interferases. Methods Enzymol 447:521–535. doi:10.1016/S0076-6879(08)02225-8

    Article  CAS  Google Scholar 

  35. Griffin MA, Davis JH, Strobel SA (2013) Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Biochemistry 52:8633–8642. doi:10.1021/bi401325c

    Article  CAS  Google Scholar 

  36. Cherny I, Overgaard M, Borch J, et al (2007) Structural and thermodynamic characterization of the Escherichia coli RelBE toxin-antitoxin system: indication for a functional role of differential stability. Biochemistry 46:12152–12163. doi:10.1021/bi701037e

    Article  CAS  Google Scholar 

  37. Overgaard M, Borch J, Gerdes K (2009) RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394:183–196. doi:10.1016/j.jmb.2009.09.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India for financial support for this study. L.K.G. and M.Y. acknowledge DST, Government of India, for a Junior Research Fellowship for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Singh Rathore.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, L.K., Yadav, M. & Rathore, J.S. Functional annotation of a novel toxin–antitoxin system Xn-RelT of Xenorhabdus nematophila; a combined in silico and in vitro approach. J Mol Model 23, 189 (2017). https://doi.org/10.1007/s00894-017-3361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3361-5

Keywords

Navigation