Skip to main content

Advertisement

Log in

Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N4B2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N4B2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N4B2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N4B2 releases more heat than the corresponding isomer of N4C2 does under well-oxygenated conditions. Our study suggests that the three most stable N4B2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials.

The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N4B2 isomers were investigated by means of density functional theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–b
Fig. 4a–b
Fig. 5a–b
Fig. 6a–b
Fig. 7

Similar content being viewed by others

References

  1. Jasper S, Hammond A, Thomas J, Kidd L, Strout DL (2011) N22C2 versus N24: role of molecular curvature in determining isomer stability. J Phys Chem A 115(42):11915–11918. doi:10.1021/jp208280c

    Article  CAS  Google Scholar 

  2. Shi LW, Wu WM, Zhao G, Chen MB (2010) From tortoise-shell-like molecular segments to C4n H2n N2n (n = 3–8) cages stabilized by alkenyl: a theoretical study. J Phys Chem A 114(10):3691–3697. doi:10.1021/jp911788p

    Article  CAS  Google Scholar 

  3. Liang YH, Luo Q, Guo M, Li QS (2012) What are the roles of N3 and N5 rings in designing polynitrogen molecules? Dalton Trans 41(39):12075–12081. doi:10.1039/c2dt31016c

    Article  CAS  Google Scholar 

  4. Valadbeigi Y (2016) Phosphorus-doped nitrogen clusters (NnPm): stable high energy density materials. Chem Phys Lett 645:195–199. doi:10.1016/j.cplett.2016.01.007

    Article  CAS  Google Scholar 

  5. Tian A, Ding F, Zhang L, Xie Y, Schaefer HF (1997) New isomers of N8 without double bonds. J Phys Chem A 101(10):1946–1950. doi:10.1021/jp962878b

    Article  CAS  Google Scholar 

  6. Fau S, Bartlett RJ (2001) Possible products of the end-on addition of N3 to N5 + and their stability. J Phys Chem A 105(16):4096–4106. doi:10.1021/jp003970h

    Article  CAS  Google Scholar 

  7. Qi C, Zhang R-B, Pang S-P (2013) Thermal stability of the N10 compound with extended nitrogen chain. RSC Adv 3(39):17741–17748. doi:10.1039/c3ra42439a

    Article  CAS  Google Scholar 

  8. Li QS, Zhao JF (2002) Theoretical study of potential energy surfaces for N12 clusters. J Phys Chem A 106(21):5367–5372. doi:10.1021/jp020110n

    Article  CAS  Google Scholar 

  9. Li QS, Liu YD (2002) Structures and stability of N11 cluster. Chem Phys Lett 353(3–4):204–212. doi:10.1016/s0009-2614(02)00018-0

    Google Scholar 

  10. Thompson MD, Bledson TM, Strout DL (2002) Dissociation barriers for odd-numbered acyclic nitrogen molecules N9 and N11. J Phys Chem A 106(29):6880–6882. doi:10.1021/jp0208182

    Article  CAS  Google Scholar 

  11. Strout DL (2002) Acyclic N10 fails as a high energy density material. J Phys Chem A 106(5):816–818. doi:10.1021/jp0132073

    Article  CAS  Google Scholar 

  12. Knapp C, Passmore J (2004) On the way to “solid nitrogen” at normal temperature and pressure? Binary azides of heavier group 15 and 16 elements. Angew Chem Int Ed 43(37):4834–4836. doi:10.1002/anie.200401748

    Article  CAS  Google Scholar 

  13. Haiges R, Schneider S, Schroer T, Christe KO (2004) High-energy-density materials: synthesis and characterization of N5 +[P(N3)6], N5 + [B(N3)4], N5 + [HF2]-n HF, N5 + [BF4], N5 + [PF6], and N5 + [SO3F]. Angew Chem Int Ed 43(37):4919–4924. doi:10.1002/anie.200454242

    Article  CAS  Google Scholar 

  14. Christe KO, Wilson WW, Sheehy JA, Boatz JA (2001) N5 +: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 40(16):2947–2947. doi:10.1002/1521-3773(20010817)40:16<2947::aid-anie11112947>3.0.co;2-c

    Article  Google Scholar 

  15. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem Int Ed 41(16):3051–3054. doi:10.1002/1521-3773(20020816)41:16<3051::AID-ANIE3051>3.0.CO;2-T

    Article  CAS  Google Scholar 

  16. Cacace F, Petris GD, Troiani A (2002) Experimental detection of tetranitrogen. Science 295(5554):480–481. doi:10.1126/science.1067681

    Article  CAS  Google Scholar 

  17. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650. doi:10.1021/jp0004361

    Article  CAS  Google Scholar 

  18. Huang Y, Zhang Y, Shreeve JM (2011) Nitrogen-rich salts based on energetic nitroaminodiazido[1,3,5]triazine and guanazine. Chem Eur J 17(5):1538–1546. doi:10.1002/chem.201002363

    Article  CAS  Google Scholar 

  19. Christe KO, Haiges R, Wilson WW, Boatz JA (2010) Synthesis and properties of N7O+. Inorg Chem 49(3):1245–1251. doi:10.1021/ic9022213

    Article  CAS  Google Scholar 

  20. Klapotke TM, Stierstorfer J (2009) The CN7 anion. J Am Chem Soc 131(3):1122–1134. doi:10.1021/ja8077522

    Article  CAS  Google Scholar 

  21. Pangavhane SD, Hebedova L, Alberti M, Havel J (2011) Laser ablation synthesis of new phosphorus nitride clusters from α-P3N5 via laser desorption ionization and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25(7):917–924. doi:10.1002/rcm.4937

    Article  CAS  Google Scholar 

  22. Casey K, Thomas J, Fairman K, Strout DL (2008) Stability and dissociation energies of open-chain N4C2. J Chem Theory Comput 4(9):1423–1427. doi:10.1021/ct8001943

    Article  CAS  Google Scholar 

  23. Abou-Rachid H, Hu A, Timoshevskii V, Song Y, Lussier LS (2008) Nanoscale high energetic materials: a polymeric nitrogen chain N8 confined inside a carbon nanotube. Phys Rev Lett 100(19):196401. doi:10.1103/PhysRevLett.100.196401

    Article  Google Scholar 

  24. Sharma H, Garg I, Dharamvir K, Jindal VK (2010) Structure of polynitrogen clusters encapsulated in C60: a density functional study. J Phys Chem C 114(19):9153–9160. doi:10.1021/jp908755r

    Article  CAS  Google Scholar 

  25. Zamani M, Keshavarz MH (2015) Thermochemical and detonation performance of boron-nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen-rich precursors. J Iran Chem Soc 12(6):1077–1087. doi:10.1007/s13738-014-0568-6

    Article  CAS  Google Scholar 

  26. Liang Y, Li N (2014) Chain or ring: which one is favorable in nitrogen-rich molecules N6XH m , N8XH m , and N10XH m (X = B, Al, Ga, m = 1 and X = C, Si, Ge, m = 2)? J Phys Chem A 118(1):248–259. doi:10.1021/jp4094832

    Article  CAS  Google Scholar 

  27. Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193(1):181–198. doi:10.1023/a:1004272227886

    Article  CAS  Google Scholar 

  28. Steinhauser G, Sterba JH, Foster M, Grass F, Bichler M (2008) Heavy metals from pyrotechnics in New Years Eve snow. Atmos Environ 42(37):8616–8622. doi:10.1016/j.atmosenv.2008.08.023

    Article  CAS  Google Scholar 

  29. Croteau G, Dills R, Beaudreau M, Davis M (2010) Emission factors and exposures from ground-level pyrotechnics. Atmos Environ 44(27):3295–3303. doi:10.1016/j.atmosenv.2010.05.048

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  31. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  32. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007. doi:10.1063/1.456153

    Article  CAS  Google Scholar 

  33. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76(4):1910–1918. doi:10.1063/1.443164

    Article  CAS  Google Scholar 

  34. Scuseria GE, Janssen CL, Schaefer HF (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89(12):7382. doi:10.1063/1.455269

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, D.01. Gaussian, Inc., Wallingford

  36. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  37. Popelier P (2000) Atoms in molecules: an introduction. Prentice Hall, Manchester

    Book  Google Scholar 

  38. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley–VCH, Weinheim

    Book  Google Scholar 

  39. Wu WJ, Zeng YL, Li XY, Zhang XY, Zheng SJ, Meng LP (2013) Interplay between halogen bonds and hydrogen bonds in OH/SH...HOX...HY (X = Cl, Br; Y = F, Cl, Br) complexes. J Mol Model 19(3):1069–1077. doi:10.1007/s00894-012-1657-z

    Article  CAS  Google Scholar 

  40. Biegler-König F (2000) Aim 2000. University of Applied Science, Bielefeld

    Google Scholar 

  41. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110(6):2822–2827. doi:10.1063/1.477924

    Article  CAS  Google Scholar 

  42. NIST (2017) NIST Chemistry WebBook (online). webbook.nist.gov/chemistry/form-ser.html.

  43. Zeng Y, Wu W, Li X, Zheng S, Meng L (2013) Influence of the Li···π interaction on the H/X···π interactions in HOLi···C6H6···HOX/XOH (X=F, Cl, Br, I) complexes. ChemPhysChem 14(8):1591–1600. doi:10.1002/cphc.201300075

    Article  CAS  Google Scholar 

  44. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100(11):4253–4264. doi:10.1021/cr990050q

    Article  CAS  Google Scholar 

  45. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12(28):7748–7757. doi:10.1039/c004189k

    Article  CAS  Google Scholar 

  46. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263. doi:10.1021/ar020230d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21473010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Song Li or Ze-Sheng Li.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WJ., Chi, WJ., Li, QS. et al. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms. J Mol Model 23, 191 (2017). https://doi.org/10.1007/s00894-017-3360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3360-6

Keywords

Navigation