Skip to main content
Log in

DFT study of CO2 and H2O co-adsorption on carbon models of coal surface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The moisture content of coal affects the adsorption capacity of CO2 on the coal surface. Since the hydrogen bonds are formed between H2O and oxygen functional group, the H2O cluster more easily adsorbs on the coal micropore than CO2 molecule. The coal micropores are occupied by H2O molecules that cannot provide extra space for CO2 adsorption, which may leads to the reduction of CO2 adsorption capacity. However, without considering factors of micropore and oxygen functional groups, the co-adsorption mechanisms of CO2 and adsorbed H2O molecule are not clear. Density functional theory (DFT) calculations were performed to elucidate the effect of adsorbed H2O to CO2 adsorption. This study reports some typical coal-H2O···CO2 complexes, along with a detailed analysis of the geometry, energy, electrostatic potential (ESP), atoms in molecules (AIM), reduced density gradient (RDG), and energy decomposition analysis (EDA). The results show that H2O molecule can more stably adsorb on the aromatic ring surface than CO2 molecule, and the absolute values of local ESP maximum and minimum of H2O cluster are greater than CO2. AIM analysis shows a detailed interaction path and strength between atoms in CO2 and H2O, and RDG analysis shows that the interactions among CO2, H2O, and coal model belong to weak van der Waals force. EDA indicates that electrostatic and long-range dispersion terms play a primary role in the co-adsorption of CO2 and H2O. According to the DFT calculated results without considering micropore structure and functional group, it is shown that the adsorbed H2O can promote CO2 adsorption on the coal surface. These results demonstrate that the micropore factor plays a dominant role in affecting CO2 adsorption capacity, the attractive interaction of adsorbed H2O to CO2 makes little contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Service RF (2004) The carbon conundrum. Science 305:962-963

    Article  CAS  Google Scholar 

  2. Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energ Buildings 40:394–398

    Article  Google Scholar 

  3. Roca J, Alcántara V (2001) Energy intensity, CO 2 emissions and the environmental Kuznets curve. The Spanish case. Energ Policy 29:553–556

    Article  Google Scholar 

  4. Marland G, Turhollow AF (1991) CO2 emissions from the production and combustion of fuel ethanol from corn. Energy 16:1307–1316

    Article  CAS  Google Scholar 

  5. Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28

    Article  Google Scholar 

  6. Cui P, Ma Y, Li H, Zhao B, Li J, Cheng P, Balbuena PB, Zhou H (2012) Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc–tetrazole framework with 24-nuclear zinc cages. J Am Chem Soc 134:18892–18895

    Article  CAS  Google Scholar 

  7. Li J, Sculley J, Zhou H (2011) Metal–organic frameworks for separations. Chem Rev 112:869–932

    Article  Google Scholar 

  8. Jiang J, Sandler SI (2005) Separation of CO2 and N2 by adsorption in C168 schwarzite: a combination of quantum mechanics and molecular simulation study. J Am Chem Soc 127:11989–11997

    Article  CAS  Google Scholar 

  9. Guo B, Chang L, Xie K (2006) Adsorption of carbon dioxide on activated carbon. J Nat Gas Chem 15:223–229

    Article  CAS  Google Scholar 

  10. Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M (2009) Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc. Int J Greenhouse Gas Control 3:249–254

    Article  CAS  Google Scholar 

  11. Horiuchi T, Hidaka H, Fukui T, Kubo Y, Horio M, Suzuki K, Mori T (1998) Effect of added basic metal oxides on CO 2 adsorption on alumina at elevated temperatures. Appl Catal A Gen 167:195–202

    Article  CAS  Google Scholar 

  12. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170:471–481

    Article  CAS  Google Scholar 

  13. Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678

    Article  CAS  Google Scholar 

  14. Huijgen WJ, Witkamp G, Comans RN (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  CAS  Google Scholar 

  15. Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331

    Article  CAS  Google Scholar 

  16. Gale J, Freund P (2001) Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ. Geosci. 8:210–217

    Article  CAS  Google Scholar 

  17. Stevens SH, Spector D, Riemer P (1998) Enhanced coalbed methane recovery using CO2 injection: worldwide resource and CO2 sequestration potential. SPE International Oil and Gas Conference and Exhibition in China Society of Petroleum Engineers

  18. Shi J, Mazumder S, Wolf K, Durucan S (2008) Competitive methane desorption by supercritical CO2 injection in coal. Transp Porous Media 75:35–54

    Article  CAS  Google Scholar 

  19. Kowalczyk P, Gauden PA, Terzyk AP, Furmaniak S, Harris PJ (2012) Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores. J Phys Chem C 116:13640–13649

    Article  CAS  Google Scholar 

  20. Busch A, Gensterblum Y, Krooss BM, Siemons N (2006) Investigation of high-pressure selective adsorption/desorption behaviour of CO 2 and CH 4 on coals: an experimental study. Int J Coal Geol 66:53–68

    Article  CAS  Google Scholar 

  21. Ceglarska-Stefańska G, Zarębska K (2002) The competitive sorption of CO 2 and CH 4 with regard to the release of methane from coal. Fuel Process Technol 77:423–429

    Article  Google Scholar 

  22. Švábová M, Weishauptová Z, Přibyl O (2011) Water vapour adsorption on coal. Fuel 90:1892–1899

    Article  Google Scholar 

  23. Ozdemir E, Schroeder K (2009) Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals. Energy Fuel 23:2821–2831

    Article  CAS  Google Scholar 

  24. Goodman AL, Busch A, Bustin RM, Chikatamarla L, Day S, Duffy GJ, Fitzgerald JE, Gasem K, Gensterblum Y, Hartman C (2007) Inter-laboratory comparison II: CO 2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 C and up to 15 MPa. Int J Coal Geol 72:153–164

    Article  CAS  Google Scholar 

  25. Day S, Sakurovs R, Weir S (2008) Supercritical gas sorption on moist coals. Int J Coal Geol 74:203–214

    Article  CAS  Google Scholar 

  26. Krooss BV, Van Bergen F, Gensterblum Y, Siemons N, Pagnier H, David P (2002) High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geol 51:69–92

    Article  CAS  Google Scholar 

  27. Liu Y, Wilcox J (2012) Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol 46:1940–1947

    Article  CAS  Google Scholar 

  28. Lopes FV, Grande CA, Ribeiro AM, Loureiro JM, Evaggelos O, Nikolakis V, Rodrigues AE (2009) Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep Sci Technol 44:1045–1073

    Article  CAS  Google Scholar 

  29. Haenel MW (1992) Recent progress in coal structure research. Fuel 71:1211–1223

    Article  CAS  Google Scholar 

  30. Yu J, Tahmasebi A, Han Y, Yin F, Li X (2013) A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol 106:9–20

    Article  CAS  Google Scholar 

  31. Salmas CE, Tsetsekou AH, Hatzilyberis KS, Androutsopoulos GP (2001) Evolution lignite mesopore structure during drying. Effect of temperature and heating time. Dry Technol 19:35–64

    Article  CAS  Google Scholar 

  32. Xu H, Chu W, Huang X, Sun W, Jiang C, Liu Z (2016) CO 2 adsorption-assisted CH 4 desorption on carbon models of coal surface: a DFT study. Appl Surf Sci 375:196–206

    Article  CAS  Google Scholar 

  33. Cabrera-Sanfelix P (2008) Adsorption and reactivity of CO2 on defective graphene sheets. J Phys Chem A 113:493–498

    Article  Google Scholar 

  34. Yang S, Ouyang L, Phillips JM, Ching WY (2006) Density-functional calculation of methane adsorption on graphite (0001). Phys Rev B 73:165407

    Article  Google Scholar 

  35. Lee K, Kim S (2013) Theoretical investigation of CO2 adsorption on graphene. Bull Kor Chem Soc 34:3022–3026

    Article  CAS  Google Scholar 

  36. Wu J, Wang J, Liu J, Yang Y, Cheng J, Wang Z, Zhou J, Cen K (2017) Moisture removal mechanism of low-rank coal by hydrothermal dewatering: physicochemical property analysis and DFT calculation. Fuel 187:242–249

    Article  CAS  Google Scholar 

  37. Cabrera-Sanfelix P, Darling GR (2007) Dissociative adsorption of water at vacancy defects in graphite. J Phys Chem C 111:18258–18263

    Article  CAS  Google Scholar 

  38. Gao Z, Ding Y, Yang W, Han W (2017) DFT study of water adsorption on lignite molecule surface. J Mol Model 23:27

    Article  Google Scholar 

  39. Stephens PJ, Devlin FJ, Chabalowski C, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  40. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  41. Kruse H, Grimme S (2012) A geometrical correction for the inter-and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J Chem Phys 136:154101

    Article  Google Scholar 

  42. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  43. Sagan F, Filas R, Mitoraj MP (2016) Non-covalent interactions in hydrogen storage materials LiN (CH3) 2BH3 and KN (CH3) 2BH3. Crystals 6:28

    Article  Google Scholar 

  44. Tian Z, Dai S, Jiang DE (2016) What can molecular simulation do for global warming? Comput Mol Sci doi: 10.1002/wcms.1241

  45. Mo J, Xue Y, Liu X, Qiu N, Chu W, Xie H (2013) Quantum chemical studies on adsorption of CO 2 on nitrogen-containing molecular segment models of coal. Surf Sci 616:85–92

    Article  CAS  Google Scholar 

  46. Gao W, Feng H, Xuan X, Chen L (2012) The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with slater-type orbital (STO) basis set. J Mol Model 18:4577–4589

    Article  CAS  Google Scholar 

  47. Qiu N, Xue Y, Guo Y, Sun W, Chu W (2012) Adsorption of methane on carbon models of coal surface studied by the density functional theory including dispersion correction (DFT-D3). Comput Theor Chem 992:37–47

    Article  CAS  Google Scholar 

  48. Neese F (2012) The ORCA program system. Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  49. Weigend F (2002) A fully direct RI-HF algorithm: implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency. Phys Chem Chem Phys 4:4285–4291

    Article  CAS  Google Scholar 

  50. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  Google Scholar 

  51. Murray JS, Politzer P (1998) Electrostatic potentials: chemical applications. Encyclopedia of Computational Chemistry. doi: 10.1002/0470845015.cca014

  52. Tavakol H, Mollaei-Renani A (2014) DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S. Struct Chem 25:1659–1667

    Article  CAS  Google Scholar 

  53. Becke A, Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley, New York

  54. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  55. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  56. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  58. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:14102

    Article  Google Scholar 

  59. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  60. Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan M (2003) CO 2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376:761–766

    Article  CAS  Google Scholar 

  61. Salame II, Bandosz TJ (1999) Experimental study of water adsorption on activated carbons. Langmuir 15:587–593

    Article  CAS  Google Scholar 

  62. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo [a] pyrene diol epoxide and its enantiomeric forms. Struct Chem 25:1521–1533

    Article  CAS  Google Scholar 

  63. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  64. Hohenstein EG, Sherrill CD (2009) Effects of heteroatoms on aromatic π− π interactions: benzene−pyridine and pyridine dimer. J Phys Chem A 113:878–886

    Article  CAS  Google Scholar 

  65. Suresh CH, Gadre SR (2007) Electrostatic potential minimum of the aromatic ring as a measure of substituent constant. J Phys Chem A 111:710–714

    Article  CAS  Google Scholar 

  66. Mani D, Arunan E (2013) The X–C⋯ Y (X= O/F, Y= O/S/F/cl/Br/N/P)‘carbon bond’and hydrophobic interactions. Phys Chem Chem Phys 15:14377–14383

    Article  CAS  Google Scholar 

  67. Cheeseman JR, Carroll MT, Bader R (1988) The mechanics of hydrogen bond formation in conjugated systems. Chem Phys Lett 143:450–458

    Article  CAS  Google Scholar 

  68. Popelier P, Bader R (1994) Effect of twisting a polypeptide on its geometry and electron distribution. J Phys Chem 98:4473–4481

    Article  CAS  Google Scholar 

  69. Tang T, Hu W, Yan D, Cui Y (1990) A quantum chemical study on selected π-type hydrogen-bonded systems. J Mol Struct THEOCHEM 207:319–326

    Article  Google Scholar 

  70. Koch U, Popelier P (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  71. Bader R, Slee TS, Cremer D, Kraka E (1983) Description of conjugation and hyperconjugation in terms of electron distributions. J Am Chem Soc 105:5061–5068

    Article  CAS  Google Scholar 

  72. Popelier P (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  73. Carroll MT, Bader RF (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    Article  CAS  Google Scholar 

  74. Carroll MT, Chang C, Bader RF (1988) Prediction of the structures of hydrogen-bonded complexes using the Laplacian of the charge density. Mol Phys 63:387–405

    Article  CAS  Google Scholar 

  75. Shahi A, Arunan E (2014) Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter-and intra-molecular bonding. Phys Chem Chem Phys 16:22935–22952

    Article  CAS  Google Scholar 

  76. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  77. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems. J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

  78. Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    Article  CAS  Google Scholar 

  79. Umeyama H, Morokuma K (1977) The origin of hydrogen bonding. An energy decomposition study. J Am Chem Soc 99:1316–1332

    Article  CAS  Google Scholar 

  80. Zhechkov L, Heine T, Patchkovskii S, Seifert G, Duarte HA (2005) An efficient a posteriori treatment for dispersion interaction in density-functional-based tight binding. J Chem Theory Comput 1:841–847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Ding, Y. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface. J Mol Model 23, 187 (2017). https://doi.org/10.1007/s00894-017-3356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3356-2

Keywords

Navigation