Haynes WM (ed) (2015) CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca Raton
Google Scholar
Tang S, Zhao H (2014) Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry. RSC Adv 4:11251–11287. doi:10.1039/c3ra47191h
CAS
Article
Google Scholar
Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2011) Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide and glymes. J Phys Chem C 115:18384–18394. doi:10.1021/jp206881t
CAS
Article
Google Scholar
Frech R, Huang W (1995) Conformational changes in diethylene glycol dimethyl ether and poly(ethylene oxide) induced by lithium ion complexation. Macromolecules 28:1246–1251. doi:10.1021/ma00108a063
CAS
Article
Google Scholar
Flick EW (ed)(1998) Glycol ethers. In: Industrial solvents handbook, 5th edn. William Andrew/Noyes, Westwood, pp 496–624
Saito S, Watanabe H, Ueno K, Mandai T, Seki S, Tsuzuki S, Kameda Y, Dokko K, Watanabe M, Umebayashi Y (2016) Li+ local structure in hydrofluoroether diluted Li-glyme solvate ionic liquid. J Phys Chem B 120:3378–3387. doi:10.1021/acs.jpcb.5b12354
Ueno K, Murai J, Moon H, Dokko K, Watanabe M (2017) A design approach to lithium-ion battery electrolyte based on diluted solvate ionic liquids. J Electrochem Soc 164:A6088–A6094. doi:10.1149/2.0121701jes
CAS
Article
Google Scholar
Shimizu K, Freitas AA, Atkin R, Warr GG, FitzGerald PA, Doi H, Saito S, Ueno K, Umebayashi Y, Watanabe M, Canongia Lopes JL (2015) Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Phys Chem Chem Phys 17:22321–22335. doi:10.1039/C5CP03414K
CAS
Article
Google Scholar
Tsuzuki S, Shinoda W, Matsugami M, Umebayashi Y, Ueno K, Mandai T, Seki S, Dokko K, Watanabe M (2015) Structures of [Li(glyme)]+ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Phys Chem Chem Phys 17:126–129. doi:10.1039/C4CP04718D
CAS
Article
Google Scholar
Mahurin SM, Mamontov E, Thompson MW, Zhang P, Turner CH, Cummings PT, Dai S (2016) Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential. Appl Phys Lett 109:143111. doi:10.1063/1.4964130
Article
Google Scholar
Feng G, Li S, Zhao W, Cummings PT (2015) Microstructure of room temperature ionic liquids at stepped graphite electrodes. AICHE J 61:3022–3028. doi:10.1002/aic.14927
CAS
Article
Google Scholar
Smith GD, Jaffe RL, Yoon DY (1993) A force field for simulations of 1,2-dimethoxyethane and poly(oxyethylene) based upon ab initio electronic structure calculations on model molecules. J Phys Chem 97:12752–12759. doi:10.1021/j100151a021
Jaffe RL, Smith GD, Yoon DY (1993) Conformations of 1,2-dimethoxyethane from ab initio electronic structure calculations. J Phys Chem 97:12745–12751. doi:10.1021/j100151a020
Sorensen RA, Liau WB, Kesner L, Boyd RH (1988) Prediction of polymer crystal structures and properties: polyethylene and poly(oxymethylene). Macromolecules 21:200–208. doi:10.1021/ma00179a039
CAS
Article
Google Scholar
MacKerell AD, Bashford D, Bellott M, et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f
CAS
Article
Google Scholar
Bedrov D, Borodin O, Smith GD (1998) Molecular dynamics simulations of 1,2-dimethoxyethane/water solutions. 1. Conformational and structural properties. J Phys Chem B 102:5683–5690. doi:10.1021/jp981009e
Bedrov D, Borodin O, Smith GD (1998) Molecular dynamics simulation of 1,2-dimethoxyethane/water solutions. 2. Dynamical properties. J Phys Chem B 102:9565–9570. doi:10.1021/jp982161j
Bedrov D, Pekny M, Smith GD (1998) Quantum-chemistry-based force field for 1,2-dimethoxyethane and poly(ethylene oxide) in aqueous solution. J Phys Chem B 102:996–1001. doi:10.1021/jp972545u
CAS
Article
Google Scholar
Bedrov D, Smith GD (1999) Molecular dynamics simulations of 1,2-dimethoxyethane in aqueous solution: influence of the water potential. J Phys Chem B 103:3791–3796. doi:10.1021/jp984613y
Smith GD, Borodin O, Bedrov D (2002) A revised quantum chemistry-based potential for poly(ethylene oxide) and its oligomers in aqueous solution. J Comput Chem 23:1480–1488. doi:10.1002/jcc.10166
CAS
Article
Google Scholar
Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OLPS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi:10.1021/ja9621760
CAS
Article
Google Scholar
Anderson PM, Wilson MR (2005) Developing a force field for simulation of poly(ethylene oxide) based upon ab initio calculations of 1,2-dimethoxyethane. Mol Phys 103:89–97. doi:10.1080/00268970412331293811
Smith GD, Jaffe RL, Yoon DY (1995) Conformations of 1,2-dimethoxyethane in the gas and liquid phases from molecular dynamics simulations. J Am Chem Soc 117:530–531. doi:10.1021/ja00106a061
Goutev N, Ohno K, Matsuura H (2000) Raman spectroscopic study on the conformation of 1,2-dimethoxyethane in the liquid phase and in aqueous solutions. J Phys Chem A 104:9226–9232. doi:10.1021/jp001340+
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. doi:10.1021/ja00124a002
CAS
Article
Google Scholar
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035
CAS
Article
Google Scholar
Dong H, Hyun J-K, Durham C, Wheeler RA (2001) Molecular dynamics simulations and structural comparisons of amorphous poly(ethylene oxide) and poly(ethylenimine) models. Polymer 42:7809–7817. doi:10.1016/S0032-3861(01)00234-8
CAS
Article
Google Scholar
Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004
CAS
Article
Google Scholar
Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895. doi:10.1021/acs.jpcb.5b00689
CAS
Article
Google Scholar
Zhang Y, Maginn EJ (2012) A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids. J Phys Chem B 116:10036–10048. doi:10.1021/jp3037999
CAS
Article
Google Scholar
Cordeiro RM, Zschunke F, Müller-Plathe F (2010) Mesoscale molecular dynamics simulations of the force between surfaces with grafted poly(ethylene oxide) chains derived from atomistic simulations. Macromolecules 43:1583–1591. doi:10.1021/ma902060k
CAS
Article
Google Scholar
Stubbs JM, Potoff JJ, Siepmann JI (2004) Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B 108:17596–17605. doi:10.1021/jp049459w
CAS
Article
Google Scholar
Fischer J, Paschek D, Geiger A, Sadowski G (2008) Modeling of aqueous poly(oxyethylene) solutions. 2. Mesoscale simulations. J Phys Chem B 112:13561–13571. doi:10.1021/jp805770q
CAS
Article
Google Scholar
Fischer J, Paschek D, Geiger A, Sadowski G (2008) Modeling of aqueous poly (oxyethylene) solutions: 1. Atomistic simulations. J Phys Chem B 112:2388–2398. doi:10.1021/jp0765345
CAS
Article
Google Scholar
Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164. doi:10.1002/jcc.21224
Article
Google Scholar
Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–825. doi:10.1002/jcc.10216
Article
Google Scholar
Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. doi:10.1103/PhysRevA.31.1695
CAS
Article
Google Scholar
Shinoda W, Shiga M, Mikami M (2004) Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B 69:134103. doi:10.1103/PhysRevB.69.134103
Article
Google Scholar
Hockney RW, Eastwood JW (1988) Computer simulation using particles. Taylor & Francis, New York
Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. doi:10.1006/jcph.1995.1039
CAS
Article
Google Scholar
Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision a.1. Gaussian, Inc., Wallingford
Google Scholar
Neumann M (1983) Dipole moment fluctuation formulas in computer simulations of polar systems. Mol Phys 50:841–858. doi:10.1080/00268978300102721
CAS
Article
Google Scholar
Holian BL, Evans DJ (1983) Shear viscosities away from the melting line: a comparison of equilibrium and nonequilibrium molecular dynamics. J Chem Phys 78:5147–5150. doi:10.1063/1.445384
CAS
Article
Google Scholar
Zhang Y, Otani A, Maginn EJ (2015) Reliable viscosity calculation from equilibrium molecular dynamics simulations: a time decomposition method. J Chem Theory Comput 11:3537–3546. doi:10.1021/acs.jctc.5b00351
CAS
Article
Google Scholar
Zhang Y, Xue L, Khabaz F, Doerfler R, Quitevis EL, Khare R, Maginn EJ (2015) Molecular topology and local dynamics govern the viscosity of imidazolium-based ionic liquids. J Phys Chem B 119:14934–14944. doi:10.1021/acs.jpcb.5b08245
CAS
Article
Google Scholar
Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn EJ (2016) Molecular design of high CO2 reactivity and low viscosity ionic liquids for CO2 separative facilitated transport membranes. Ind Eng Chem Res 55:2821–2830. doi:10.1021/acs.iecr.6b00188
Kodama D, Kanakubo M, Kokubo M, Hashimoto S, Nanjo H, Kato M (2011) Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib 302:103–108. doi:10.1016/j.fluid.2010.08.014
CAS
Article
Google Scholar
Conesa A, Shen S, Coronas A (1998) Liquid densities, kinematic viscosities, and heat capacities of some ethylene glycol dimethyl ethers at temperatures from 283.15 to 423.15 K. Int J Thermophys 19:1343–1358. doi:10.1023/A:1021927417610
CAS
Article
Google Scholar
Lago A, Rivas MA, Legido J, Iglesias TP (2009) Study of static permittivity and density of the systems {(n-nonane + monoglyme or diglyme)} at various temperatures. J Chem Thermodyn 41:257–264. doi:10.1016/j.jct.2008.09.006
Hayamizu K, Price WS (2004) A new type of sample tube for reducing convection effects in PGSE-NMR measurements of self-diffusion coefficients of liquid samples. J Magn Reson 167:328–333. doi:10.1016/j.jmr.2004.01.006
CAS
Article
Google Scholar
Pereira SM, Iglesias TP, Legido JL, Rivas MA, Real JN (2001) Relative permittivity increments for {xCH3OH + (1−x) CH3OCH2(CH2OCH2)3CH2OCH3} from T = 283.15 K to T = 323.15 K. J Chem Thermodyn 33:433–440. doi:10.1006/jcht.2000.0746
Hayamizu K, Akiba E, Bando T, Aihara Y (2002) 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)
n
CH3 (n = 3−50) doped with LiN(SO2CF3)2. J Chem Phys 117:5929–5939. doi:10.1063/1.1501279
Ku H-C, Tu C-H (2000) Densities and viscosities of seven glycol ethers from 288.15 K to 343.15 K. J Chem Eng Data 45:391–394. doi:10.1021/je990281u
CAS
Article
Google Scholar
Nichols G, Orf J, Reiter SM, Chickos J, Gokel GW (2000) The vaporization enthalpies of some crown and polyethers by correlation gas chromatography. Thermochim Acta 346:15–28. doi:10.1016/S0040-6031(99)00405-0