Skip to main content
Log in

Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein represents an attractive pharmacological target for the treatment of chronic myeloid leukemia (CML). The high affinity of monobody AS25 was designed to target the Src homology 2 (SH2) domain of Bcr-Abl, leading to allosteric inhibition of Bcr-Abl through formation of protein–protein interactions. An I164E mutation in the SH2 domain disrupts AS25 binding to the SH2 domain of Bcr-Abl. The detailed mechanisms, however, remain to be unresolved. Here, molecular dynamics (MD) simulations and binding free energy calculations were performed to explore the conformational and energetic differences between the wild-type (WT) complexes of Bcr-Abl SH2 domain and AS25 (SH2WT–AS25) as well as the mutated complexes (SH2I164E–AS25). The results revealed that I164E mutation not only caused an increase in the conformational flexibility of SH2–AS25 complexes, but also weakened the binding affinity of AS25 to SH2. The comparative binding modes of SH2-AS25 complexes between WT and the I164E mutant were comprehensively analyzed to unravel the disruption of hydrophobic and hydrogen bonding interactions in the interface of the SH2-AS25 complex triggered by the I164E mutation. The results obtained may help to design the next generation of higher affinity Bcr-Abl SH2-specific peptide inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cilloni D, Saglio G (2012) Molecular pathways: BCR-ABL. Clin Cancer Res 18:930–937

    Article  CAS  Google Scholar 

  2. Lambert GK, Duhme-Klair A-K, Morgan T, Ramjee MK (2013) The background, discovery and clinical development of BCR-ABL inhibitors. Drug Discov Today 18:992–1000

    Article  CAS  Google Scholar 

  3. Balabanov S, Braig M, Brümmendorf TH (2014) Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol 11:89–99

    Article  Google Scholar 

  4. Desogus S, Schenone S, Brullo C et al (2015) Bcr-Abl tyrosine kinase inhibitors: a patent review. Expert Opin Ther Pat 25:397–412

    Article  CAS  Google Scholar 

  5. Roskoski Jr R (2015) A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res 100:1–23

    Article  CAS  Google Scholar 

  6. Skora L, Mestan J, Fabbro D et al (2013) NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proc Natl Acad Sci USA 110:E4437–E4445

    Article  CAS  Google Scholar 

  7. Pemovska T, Johnson E, Kontro M et al (2015) Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519:102–105

    Article  CAS  Google Scholar 

  8. Yang K, Fu L (2015) Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: a review. Crit Rev Oncol Hematol 93:277–292

    Article  Google Scholar 

  9. Zhang J, Adrián FJ, Jahnke W et al (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506

    Article  CAS  Google Scholar 

  10. Lu S, Jang H, Muratcioglu S et al (2016) Ras conformational ensembles, Allostery, and signaling. Chem Rev 116:6607–6665

    Article  CAS  Google Scholar 

  11. Lu S, Jang H, Gu S, et al (2016) Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 45:4929–4952

    Article  CAS  Google Scholar 

  12. Tanaka T, Williams RL, Rabbitts TH (2007) Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. EMBO J 26:3250–3259

    Article  CAS  Google Scholar 

  13. Salzman GS, Ackerman SD, Ding C et al (2016) Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91:1292–1304

    Article  CAS  Google Scholar 

  14. Wojcik J, Lamontanara AJ, Grabe G et al (2016) Allosteric inhibition of Bcr-Abl kinase by high affinity Monobody inhibitors directed to the Src homology 2 (SH2)-kinase Interface. J Biol Chem 291:8836–8847

    Article  CAS  Google Scholar 

  15. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  16. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  Google Scholar 

  17. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  18. Lu S, Huang W, Wang Q et al (2014) The structural basis of ATP as an allosteric modulator. PLoS Comput Biol 10:e1003831

    Article  Google Scholar 

  19. Lu S, Deng R, Jiang H et al (2015) The mechanism of ATP-dependent allosteric protection of Akt kinase phosphorylation. Structure 23:1725–1734

    Article  CAS  Google Scholar 

  20. Lu S, Banerjee A, Jang H et al (2015) GTP binding and oncogenic mutations may attenuate hypervariable region (HVR)-catalytic domain interactions in small GTPase K-Ras4B, exposing the effector binding site. J Biol Chem 290:28887–28900

    Article  CAS  Google Scholar 

  21. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  22. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  23. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

  24. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877

    Article  CAS  Google Scholar 

  25. Ning L, Wang Q, Zheng Y et al (2015) Effects of the A117V mutation on the folding and aggregation of palindromic sequences (PrP113-120) in prion: insights from replica exchange molecular dynamics simulations. Mol BioSyst 11:647–655

    Article  CAS  Google Scholar 

  26. Wang J, Morin P, Wang W et al (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  27. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  28. Kong X, Pan P, Li D et al (2015) Importance of protein flexibility in ranking inhibitor affinities: modeling the binding mechanisms of piperidine carboxamides as type I1/2 ALK inhibitors. Phys Chem Chem Phys 17:6098–6113

    Article  CAS  Google Scholar 

  29. Zhou Y, Zhang N, Chen W et al (2016) Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: comparative molecular dynamics simulation studies. Phys Chem Chem Phys 18:9202–9210

    Article  CAS  Google Scholar 

  30. Yang B, Zhang H, Wang H (2015) Atomistic insights into the lung cancer-associated L755P mutation in HER2 resistance to lapatinib: a molecular dynamics study. J Mol Model 21:2580

    Google Scholar 

  31. Ni Z, Zhang T-C (2015) Computationally unraveling how ceritinib overcomes drug-resistance mutations in ALK-rearranged lung cancer. J Mol Model 21:175

    Article  Google Scholar 

  32. Lang EJM, Heyes LC, Jameson GB, Parker EJ (2016) Calculated pKa variations expose dynamic allosteric communication networks. J Am Chem Soc 138:2036–2045

    Article  CAS  Google Scholar 

  33. Guo X-Y, Qi R-P, Xu D-G et al (2015) Structural and energetic insight into the interactions between the benzolactam inhibitors and tumor marker HSP90α. Comput Biol Chem 58:182–191

    Article  CAS  Google Scholar 

  34. Panjarian S, Iacob RE, Chen S et al (2013) Structure and dynamic regulation of Abl kinases. J Biol Chem 288:5443–5450

    Article  CAS  Google Scholar 

  35. Nagar B, Hantschel O, Young MA et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871

    Article  CAS  Google Scholar 

  36. Nagar B, Hantschel O, Seeliger M et al (2006) Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell 21:787–798

    Article  CAS  Google Scholar 

  37. Jang H, Banerjee A, Chavan TS et al (2016) The higher level of complexity of K-Ras4B activation at the membrane. FASEB J 30:1643–1655

    Article  CAS  Google Scholar 

  38. Lu S, Jang H, Nussinov R et al (2016) The structural basis of oncogenic mutations G12, G13 and Q61 in small GTPase K-Ras4B. Sci Rep 6:21949

    Article  CAS  Google Scholar 

  39. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the high performance supercomputer center at Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Wang or Jialin Wang.

Ethics declarations

Funding

This work was supported by Shanghai Health and Family Planning Commission (20154Y0058).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Mingfei Ji, Guodong Zheng, and Xiaolong Li wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Zheng, G., Li, X. et al. Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25. J Mol Model 23, 183 (2017). https://doi.org/10.1007/s00894-017-3353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3353-5

Keywords

Navigation