Skip to main content
Log in

A novel analytical potential function for dicationic diatomic molecular systems based on deformed exponential function

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we propose a new alternative analytical function aiming to better describe the potential energy curves of the doubly charged diatomic molecules. To achieve this goal, we modified an existing potential function in the literature to describe dicationic diatomic molecules using the deformed exponential function. We generated the potential energy curve of the testing group of dicationic diatomic molecules \( \mathrm{B}{\mathrm{e}}_2^{2+} \), BH2+, \( \mathrm{H}{\mathrm{e}}_2^{2+} \) and NH2+ by means of the CCSD(T)/aug-cc-pVQZ level of theory. To validate this new function, we also calculated the spectroscopic constants and the rovibrational spectra for the electronic state \( {X}^1{\varSigma}_g^{+} \)of the \( \mathrm{B}{\mathrm{e}}_2^{2+} \) and \( \mathrm{H}{\mathrm{e}}_2^{2+} \) systems using the Dunham and discrete variable representation methods. For BH2+ and NH2+ molecules, despite exhibiting a local minimum in the potential energy curve, no vibrational levels are supported, so the spectroscopic constants for these poorly bound systems are invalidated. The fitting accuracy had a better performance over the original potential for describing dicationic diatomic systems, considering that the discrete variable representation method resulted in a similar vibrational structure described in the literature. This fact can be explained due to the deformed function’s flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mathur D (2004) Structure and dynamics of molecules in high charge states. Phys Rep 391:1–118. doi:10.1016/j.physrep.2003.10.016

    Article  CAS  Google Scholar 

  2. Price SD (2007) Coincidence studies of the bond-forming reactivity and reaction dynamics of molecular dications. Int J Mass Spectrom 260:1–19. doi:10.1016/j.ijms.2006.06.018

    Article  CAS  Google Scholar 

  3. Rodríguez-Mercado JJ, Mateos-Nava RA, Altamirano-Lozano MA (2011) DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicol Vitr 25:1996–2002. doi:10.1016/j.tiv.2011.07.009

    Article  Google Scholar 

  4. Schröder D, Schwarz H (1999) Generation, stability, and reactivity of small, multiply charged ions in the gas phase. J Phys Chem A 103:7385–7394. doi:10.1073/pnas.1004728107

    Article  Google Scholar 

  5. Shepperson B, Liu J, Ellis AM, Yang S (2011) Ionization of doped helium nanodroplets: residual helium attached to diatomic cations and their clusters. J Phys Chem A 115:7010–7016. doi:10.1021/jp112204e

    Article  CAS  Google Scholar 

  6. De Oliveira-Filho AGS, Ornellas FR (2013) The surprising metastability of TeH2+. J Chem Phys doi:10.1063/1.4809566

    Google Scholar 

  7. Alves TV, Hermoso W, Franzreb K, Ornellas FR (2011) Calcium-containing diatomic dications in the gas phase. Phys Chem Chem Phys 13:18297. doi:10.1039/c1cp20735k

    Article  CAS  Google Scholar 

  8. Linguerri R, Hochlaf M, Bacchus-Montabonel M-C, Desouter-Lecomte M (2013) Characterization of the MgO2+ dication in the gas phase: electronic states, spectroscopy and atmospheric implications. Phys Chem Chem Phys 15:824–831. doi:10.1039/c2cp43576d

    Article  CAS  Google Scholar 

  9. Esteves CS, de Oliveira HCB, Ribeiro L, et al (2006) Modeling diatomic potential energy curves through the generalized exponential function. Chem Phys Lett 427:10–13. doi:10.1016/j.cplett.2006.06.020

    Article  CAS  Google Scholar 

  10. Nenajdenko VG, Shevchenko NE, Balenkova ES, Alabugin IV (2003) 1,2-Dications in organic main group systems. Chem Rev 103:229–282. doi:10.1021/cr0000628

    Article  CAS  Google Scholar 

  11. Babb JF, Du ML (1990) Quantum-mechanical calculation of quasi-bound energies and resonance widths for the helium molecular dication He22+. Chem Phys Lett 167:273–277. doi:10.1016/0009-2614(90)87167-P

    Article  CAS  Google Scholar 

  12. Nicolaides CA (1989) Energy generation from volcanic ground states. Application to cold He22+. Chem Phys Lett 161:547–553. doi:10.1016/0009-2614(89)87036-8

    Article  CAS  Google Scholar 

  13. Salviano LR, Esteves CS, de Oliveira HCB, et al (2010) Use of generalized exponential function to build three-dimensional reactive surfaces. Phys A Stat Mech its Appl 389:3604–3612. doi:10.1016/j.physa.2010.04.031

    Article  CAS  Google Scholar 

  14. de Oliveira HCB, Rangel FC, Esteves CS et al. (2009) Calculation of MP2 and coupled-cluster molecular properties using the q-integral method. J Phys Chem A 113:14691–14698. doi:10.1021/jp904807b

    Article  Google Scholar 

  15. Wang F, Yang C, Zhu Z (2004) New analytical potential energy function for diatomic cations. J Mol Struct THEOCHEM 684:9–13. doi:10.1016/j.theochem.2004.06.002

    Article  CAS  Google Scholar 

  16. Zhang Y-G, Zha X-W, Gao T (2012) Theoretical study on the low-lying electronic states of he 2, he + 2, and he ++ 2. Commun Theor Phys 57:1048–1052. doi:10.1088/0253-6102/57/6/18

    Article  CAS  Google Scholar 

  17. Royappa AT, Suri V, McDonough JR (2006) Comparison of empirical closed-form functions for fitting diatomic interaction potentials of ground state first- and second-row diatomics. J Mol Struct 787:209–215. doi:10.1016/j.molstruc.2005.11.008

    Article  CAS  Google Scholar 

  18. Sabzyan H, Keshavarz E, Noorisafa Z (2014) Diatomic dications and dianions. J Iran Chem Soc 11:871–945. doi:10.1007/s13738-013-0359-5

    Article  CAS  Google Scholar 

  19. Dunham JL (1932) The energy levels of a rotating vibrator. Phys Rev 41:721–731

    Article  CAS  Google Scholar 

  20. Soares Neto JJ, Costa LS (1998) Numerical generation of optimized discrete variable representations. Brazilian J Phys 28:1–11. doi:10.1590/S0103-97331998000100001

    Article  CAS  Google Scholar 

  21. Light JC, Hamilton IP, Lill JV (1985) Generalized discrete variable approximation in quantum mechanicsa. J Chem Phys 82:1400. doi:10.1063/1.448462

    Article  CAS  Google Scholar 

  22. Machado DS, Silva VC, Esteves C et al (2012) Fully relativistic rovibrational energies and spectroscopic constants of the lowest X:(1)0(+)g, A’:(1)2( u ), A:(1)1 ( u ), B’:(1)0(-)u and B:(1)0(+)u states of molecular chlorine. J Mol Model 18:4343–4348. doi:10.1007/s00894-012-1429-9

  23. da Fonsêca JE, de Oliveira HCB, da Cunha WF, Gargano R (2014) Alternative analytical forms to model diatomic systems based on the deformed exponential function. J Mol Model 20:2297. doi:10.1007/s00894-014-2297-2

    Article  Google Scholar 

  24. Rangel FC, de Oliveira HCB, Montel ALB, Mundim KC (2010) Calculation of DFT molecular properties using the integral method. Phys A Stat Mech its Appl 389:5208–5215. doi:10.1016/j.physa.2010.06.030

  25. Amador DHT, de Oliveira HCB, Sambrano JR, Gargano R, de Macedo LGM (2016) 4-Component correlated all-electron study on Ekaactinium Fluoride (E121F) including Gaunt interaction: accurate analytical form, bonding and influence on rovibrational spectra. Chem Phys Lett 662:169–175

  26. Coutinho ND, Silva VHC, Mundim KC, de Oliveira HCB (2015) Description of the effect of temperature on food systems using the deformed Arrhenius rate law: deviations from linearity in logarithmic plots vs. inverse temperature. Rend Lincei 26:141–149. doi:10.1007/s12210-015-0407-4

    Article  Google Scholar 

  27. Carvalho-Silva VH, Aquilanti V, de Oliveira HCB, Mundim KC (2017) Deformed transition-state theory: deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J Comput Chem 38:178–188. doi:10.1002/jcc.24529

    Article  CAS  Google Scholar 

  28. Santin LG, Toledo EM, Carvalho-Silva VH et al. (2016) Methanol solvation effect on the proton rearrangement of curcumin’s enol forms: an ab initio molecular dynamics and electronic structure viewpoint. J Phys Chem C 120(36):19923–19931

  29. Claudino D, Gargano R, Carvalho-Silva VH, et al (2016) Investigation of the abstraction and dissociation mechanism in the nitrogen trifluoride channels: combined post-Hartree-Fock and transition state theory approaches. J Phys Chem A 120:5464–5473. doi:10.1021/acs.jpca.6b04947

  30. Mundim KC, Tsallis C (1996) Geometry optimization and conformational analysis through generalized simulated annealing. Int J Quantum Chem 58:373–381

    Article  CAS  Google Scholar 

  31. de Andrade MD, Mundim KC, Malbouisson LAC (2005) GSA algorithm applied to electronic structure: Hartree-Fock-GSA method. Int J Quantum Chem 103:493–499. doi:10.1002/qua.20580

    Article  Google Scholar 

  32. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  33. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  34. Amador DHT, de Oliveira HCB, Sambrano JR, et al (2016) 4-component correlated all-electron study on Eka-actinium fluoride (E121F) including gaunt interaction: accurate analytical form, bonding and influence on rovibrational spectra. Chem Phys Lett 662:169–175. doi:10.1016/j.cplett.2016.09.025

    Article  CAS  Google Scholar 

  35. Pople JA, Head-Gordon M (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975. doi:10.1063/1.453520

    Article  CAS  Google Scholar 

  36. Woon T, Dunning Jr TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371. doi:10.1063/1.464303

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

  38. Wang FH, Zhu ZH, Jing FQ (1998) Analytic potential energy function for doubly charged ions BH2+, CH2+ and NH2+. J Mol Struct THEOCHEM 453:71–75. doi:10.1016/S0166-1280(98)00181-X

  39. Nicolaides CA, Chrysos M, Valtazanos P (1990) Stability and physicochemical reactions of light dications. J Phys B Atomic Mol Phys 23:791–800. doi:10.1088/0953-4075/23/5/004

    Article  CAS  Google Scholar 

  40. Olsen J, Jørgensen P, Helgaker T, Christiansen O (2000) Divergence in Moller-Plesset theory: a simple explanation based on a two-state model. J Chem Phys 112:9736–9748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following Brazilian agencies for financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Distrito Federal (FAPDF) and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG). L. Ribeiro and V. H. Carvalho-Silva, in particular, express their gratitude to PROBIP-UEG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luciano Ribeiro or Heibbe C. B. de Oliveira.

Additional information

This paper belongs to Topical Collection VI Symposium on Electronic Structure and Molecular Dynamics – VI SeedMol

Electronic supplementary material

ESM 1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, D.F.S., Silva, R.A.L., de Oliveira, A.P. et al. A novel analytical potential function for dicationic diatomic molecular systems based on deformed exponential function. J Mol Model 23, 182 (2017). https://doi.org/10.1007/s00894-017-3339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3339-3

Keywords

Navigation