Skip to main content
Log in

A DFT study on the mechanism of the organocatalytic synthesis of a benzoxazine-substituted indolizine derivative

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 30 December 2019

This article has been updated

Abstract

A series of theoretical computations were conducted via density functional theory at the B3LYP/6–31 + G(d,p) level to study the mechanism of the organocatalytic synthesis of a benzoxazine-substituted indolizine derivative. Four possible alternative pathways were considered in this work. The calculated results show that the formation of an N-ylide precursor from 4-dimethylaminopyridine (DMAP) is a key step as it provides the necessary nucleophilic centre for the subsequent H-migration and H-elimination processes. The precursor N-ylide and Schiff base isomers with the most favourable activities in the preliminary work were identified theoretically by analysing the reaction mechanism. The synthetic mechanism to obtain the indolizine derivative was found to be a two-step reaction, with the rate-determining step being the first H migration to form a transition state with a four-membered ring. The catalytic activity of DMAP in the first H-migration step in the overall synthetic process greatly reduces the reaction barrier height. The chiral selectivity of the synthesis is dominated by the spatial geometry of the Schiff base functional group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Diagram 1
Scheme 3
Fig. 2
Diagram 2
Scheme 4
Scheme 5
Fig. 3a–b
Diagram 3
Scheme 6
Diagram 4a–b
Scheme 7
Diagram 5

Similar content being viewed by others

Change history

  • 30 December 2019

    The original version of this article unfortunately contained a mistake. The presentation of Diagram 2, Fig. 2 and Fig. 3 were incorrect.

References

  1. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) Tetrahedron Lett 50:5248–5250

    Article  CAS  Google Scholar 

  2. Debache A, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2008) Synlett 4:509–512

    Article  Google Scholar 

  3. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2010) Lett Org Chem 7:272–276

    Article  CAS  Google Scholar 

  4. Ramachary DB, Mondal R, Jain S (2016) ARKIVOC 2:98–115

    Google Scholar 

  5. Lee J, Muthaiah S, Hong SH (2014) Adv Synth Catal 356:2653–2660

    Article  CAS  Google Scholar 

  6. Derabli C, Boulcina R, Kirsch G, Carboni B, Debache A (2014) Tetrahedron Lett 55:200–204

    Article  CAS  Google Scholar 

  7. Shi Q, Tan ZC, Di YY, Tong B, Li YS, Wang SX (2017) J Chem Eng Data 52:941–947

    Article  Google Scholar 

  8. Murugan R, Scriven EF (2003) Aldrichim Acta 31:21–27

    Google Scholar 

  9. Christoph G (2003) Synlett 10:1568–1569

    Google Scholar 

  10. Ragnarsson U, Grehn L (1998) Acc Chem Res 31:494–501

    Article  CAS  Google Scholar 

  11. Wang Y, Kataeva O, Metz P (2009) Adv Synth Catal 351:2075–2080

    Article  CAS  Google Scholar 

  12. Bappert E, Müller P, Fu GC (2006) Chem Commun 24:2604–2606

    Article  Google Scholar 

  13. Chaudhary S, Hernandez O (1979) Tetrahedron Lett 20:99–102

    Article  Google Scholar 

  14. Xie J, Sha F, Wu XY (2016) Tetrahedron 72:4047–4054

    Article  CAS  Google Scholar 

  15. Zhao GL, Huang JW, Shi M (2003) Org Lett 5:4737–4739

    Article  CAS  Google Scholar 

  16. Sakakura A, Kawajiri K, Ohkubo T, Kosugi Y, Ishihara K (2007) J Am Chem Soc 129:14775–14779

    Article  CAS  Google Scholar 

  17. Shang YJ, Wang CE, He XW, Ju K, Zhang M, Yu SY, Wu JP (2010) Tetrahedron 66:9629–9633

    Article  CAS  Google Scholar 

  18. Khan AT, Lal M, Ali S, Khan MM (2011) Tetrahedron Lett 52:5327–5332

    Article  CAS  Google Scholar 

  19. Busto E, Gotor-Fernández V, Gotor V (2006) Tetrahedron Asymmetry 17:1007–1016

    Article  CAS  Google Scholar 

  20. Sun XX, Zhang HH, Li GH, Meng L, Shi F (2016) Chem Commun 52:2968–2971

    Article  CAS  Google Scholar 

  21. Haimov E, Nairoukh Z, Shterenberg A, Berkovitz T, Jamison TF, Marek I (2016) Angew Chem Int Ed 55:5517–5520

    Article  CAS  Google Scholar 

  22. Adhikari D, Nguyen ST, Baik MH (2014) Chem Commun 50:2676–2678

    Article  CAS  Google Scholar 

  23. Roshan KR, Palissery RA, Kathalikkattil AC, Babu R, Mathai G, Lee HS, Park DW (2016) Catal Sci Technol 6:3997–4004

    Article  CAS  Google Scholar 

  24. Xu SJ, Held I, Kempf B, Mayr H, Steglich W, Zipse H (2005) Chem Eur J 11:4751–4757

    Article  CAS  Google Scholar 

  25. Smith SC, Clarke ED, Ridley SM, Bartlett D, Greenhow DT, Glithro H, Klong AY, Mitchell G, Mullier GW (2005) Pest Manag Sci 61:16–24

    Article  CAS  Google Scholar 

  26. Hagishita S, Yamada M, Shirahase K, Okada T, Murakami Y, Ito Y, Matsuura T, Wada M, Kato T, Ueno M (1996) J Med Chem 39:3636–3658

    Article  CAS  Google Scholar 

  27. Marcos M, Serrano JL, Sierra T, Gimenez MJ (1993) Chem Mater 5:1332–1337

    Article  CAS  Google Scholar 

  28. Asahina Y, Takei M, Kimura T, Fukuda Y (2008) J Med Chem 51:3238–3249

    Article  CAS  Google Scholar 

  29. Bourlot AS, Sanchez I, Dureng G, Guillaumet G, Massingham R, Monteil A, Winslow E, Pujol MD, Merour JY (1998) J Med Chem 41:3142–3158

    Article  CAS  Google Scholar 

  30. Phillips OA, Sharaf LH (2016) Expert Opin Ther Pat 26:591–605

    Article  CAS  Google Scholar 

  31. Wakabayashi H, Narita T, Suga A (2010) In Vivo 24:39–44

    CAS  PubMed  Google Scholar 

  32. Mousset D, Rabot R, Bouyssou P, Coudert G, Gillaizeau I (2010) Tetrahedron Lett 51:3987–3990

    Article  CAS  Google Scholar 

  33. De Bolle L, Andrei G, Snoeck R, Zhang Y, Van Lommel A, Otto M, Bousseau A, Roy C, De Clercq E, Naesens L (2004) Biochem Pharmacol 67:325–336

    Article  CAS  Google Scholar 

  34. Blattes E, Lockhart B, Lestage P, Schwendimann L, Gressens P, Fleury MB, Largeron M (2005) J Med Chem 48:1282–1286

    Article  CAS  Google Scholar 

  35. Ilas J, Jakopin Z, Borstnar T, Stegnar M, Kikelj D (2008) J Med Chem 51:5617–5629

    Article  CAS  Google Scholar 

  36. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2009) Gaussian 09, revision a.02. Gaussian, Inc., Wallingford

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (21373012) and the generous support provided by the Supercomputing Center of the University of Science and Technology of China in the form of computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufan Wang.

Electronic supplementary material

ESM 1

The tables list all key bond lengths for the structures involved in the reaction processes, and the Z-matrices for the corresponding optimized structures obtained from the DFT calculations. (DOC 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Wang, S. & Shang, Y. A DFT study on the mechanism of the organocatalytic synthesis of a benzoxazine-substituted indolizine derivative. J Mol Model 23, 177 (2017). https://doi.org/10.1007/s00894-017-3328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3328-6

Keywords

Navigation