Advertisement

Chlorine gas reaction with ZnO wurtzoid nanocrystals as a function of temperature: a DFT study

  • Mudar Ahmed Abdulsattar
Original Paper
  • 118 Downloads

Abstract

In the present work, we applied density functional theory and temperature-dependent Gibbs free energy calculations to wurtzoid structures to explain the sensitivity of ZnO nanocrystals towards chlorine molecules. In agreement with experimental findings, our results revealed that chlorine sensing under ambient conditions is feasible. Higher temperatures increased the sensitivity of ZnO nanocrystals towards chlorine gas molecules. Peak calculated sensitivities were in the temperature ranges (167–220 °C), (447–578 °C) and (952–1159 °C), which is in good agreement with experimentally determined temperatures. According to the calculated Gibbs free energy, these three ranges correspond to the van der Waals attachment of Cl2 molecules on Zn-polar sites, van der Waals attachment of Cl2 molecules on O sites, and dissociation of Cl2 molecules on ZnO nanocrystal surfaces, respectively. The removal of chlorine atoms from the surface of ZnO nanocrystals is difficult at low temperatures because of the high electron affinity of chlorine gas atoms, which results in a long recovery time and accumulation of chlorine atoms and molecules on the ZnO surface. Atomic charges and charge transfer are depicted using natural bond orbital analysis to explain the present mechanisms.

Keywords

ZnO Chlorine Sensors DFT 

References

  1. 1.
    Morkoç H, Özgür U (2009) Zinc oxide. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Anderson T, Ren F, Pearton S, Kang B, Wang H, Chang C, Lin J (2009) Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sens 9(6):4669–4694CrossRefGoogle Scholar
  3. 3.
    Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115(15):7944–8000CrossRefGoogle Scholar
  4. 4.
    Lu C, Chang S, Chang S, Hsueh T, Hsu C, Chiou Y, Chen I (2009) ZnO nanowire-based oxygen gas sensor. IEEE Sens J 9(4):485–489CrossRefGoogle Scholar
  5. 5.
    Chu Y (2013) "Solid state gas sensors for detection of explosives and explosive precursors", PhD, University of Rhode IslandGoogle Scholar
  6. 6.
    Taira K, Nakao K, Suzuki K (2015) CO2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO2. J Optoelectron Adv Mat 115(2):563–579Google Scholar
  7. 7.
    Abdulsattar M (2015) Molecular approach to hexagonal and cubic diamond nanocrystals. Carbon Lett 16(3):192–197CrossRefGoogle Scholar
  8. 8.
    Abdulsattar M (2015) Capped ZnO (3,0) nanotubes as building blocks of bare and H passivated wurtzite ZnO nanocrystals. Superlattices Microstruct 85:813–819CrossRefGoogle Scholar
  9. 9.
    Banfalvi G (2012) C12: The building block of hexagonal diamond. Cent Eur J Chem 10(5):1676–1680Google Scholar
  10. 10.
    NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 Release 18, October 2016, Editor: Russell D. Johnson III (http://cccbdb.nist.gov/) [Accessed: 29 October 2016]
  11. 11.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian, Inc, Wallingford, CTGoogle Scholar
  12. 12.
    Sprecher D, Jungen C, Ubachs W, Merkt F (2011) Towards measuring the ionisation and dissociation energies of molecular hydrogen with sub-MHz accuracy. Faraday Discuss 150:51CrossRefGoogle Scholar
  13. 13.
    Magro W, Ceperley D, Pierleoni C, Bernu B (1996) Molecular dissociation in hot, dense hydrogen. Phys Rev Lett 76(8):1240–1243CrossRefGoogle Scholar
  14. 14.
    Patil D, Patil L (2007) Room temperature chlorine gas sensing using surface modified ZnO thick film resistors. Sens Actuators B: Chem 123(1):546–553CrossRefGoogle Scholar
  15. 15.
    Pan Z, Huang S (2008) Preparation and sensitive characteristics of ZnO-based chlorine gas sensor. J Fun Mater Dev 14(1):43–46Google Scholar
  16. 16.
    Park S, Hong T, Jung J, Lee C (2014) Room temperature hydrogen sensing of multiple networked ZnO/WO3 core–shell nanowire sensors under UV illumination. Curr Appl Phys 14(9):1171–1175CrossRefGoogle Scholar
  17. 17.
    Kaneti Y, Zhang Z, Yue J, Zakaria Q, Chen C, Jiang X, Yu A (2014) Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies. Phys Chem Chem Phys 16(23):11471–11480Google Scholar
  18. 18.
    Yuan Q, Zhao Y, Li L, Wang T (2009) Ab initio study of ZnO-based gas-sensing mechanisms: surface reconstruction and charge transfer. J Phys Chem C 113(15):6107–6113CrossRefGoogle Scholar
  19. 19.
    Bai S, Guo T, Zhao Y, Sun J, Li D, Chen A, Liu C (2014) Sensing performance and mechanism of Fe-doped ZnO microflowers. Sens Actuators B: Chem 195:657–666CrossRefGoogle Scholar
  20. 20.
    Farmanzadeh D, Tabari L (2015) DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor. Appl Surf Sci 324:864–870CrossRefGoogle Scholar
  21. 21.
    Akbari A, Firooz A, Beheshtian J, Khodadadi A (2014) Experimental and theoretical study of CO adsorption on the surface of single phase hexagonally plate ZnO. Appl Surf Sci 315:8–15CrossRefGoogle Scholar
  22. 22.
    Beheshtian J, Peyghan A, Bagheri Z (2012) Adsorption and dissociation of Cl2 molecule on ZnO nanocluster. Appl Surf Sci 258(20):8171–8176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Ministry of Science and TechnologyBaghdadIraq

Personalised recommendations