First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals

  • Ria Sinha Roy
  • Avijit Mondal
  • Prasanta K. Nandi
Original Paper


In the present investigation, the first hyperpolarizability of alkali and alkaline earth metal derivatives of cyclooctatetraene (COT) has been calculated using BHHLYP and CAM-B3LYP functional for 6-311++G(d,p), 6-311++G(3df,3pd), and aug-pc 2 basis sets. Introduction of Na/K atoms at the axial position of COT and Li, Na, K/Be, Mg, Ca metal atoms and cyanide groups at the equatorial sites leads to lager enhancement of first hyperpolarizability. The ring charge density can account for the variation of first hyperpolarizability. The two state model has been invoked to explain the variation of first hyperpolarizability.


Equatorial and axial position of COT First hyperpolarizability Two-state model 



(RSR) acknowledges the UGC BSR (F.7-223/2009 (BSR) for financial support.

Supplementary material

894_2017_3273_MOESM1_ESM.docx (71 kb)
ESM 1 (DOCX 71 kb)


  1. 1.
    Parasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New YorkGoogle Scholar
  2. 2.
    Marder SR, Kippelen B, Jen AK-Y, Peyghambarian N (1997) Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388:845–851CrossRefGoogle Scholar
  3. 3.
    Kurumida J, Yoo SJB (2012) Nonlinear optical signal processing in optical packet switching systems. IEEE J Sel Top Quantum Electron 18:978–987CrossRefGoogle Scholar
  4. 4.
    Shi Y, Zhang C, Bechtel JH, Dalton LR, Robinson BH, Steier WH (2000) Low (Sub–1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape. Science 288(5463):119–122CrossRefGoogle Scholar
  5. 5.
    Silly MG, Porres L, Mongin O, Chollet PA, Blanchard- Desce M (2003) Optical limiting in the red–NIR range with soluble two-photon absorbing molecules. Chem Phys Lett 379:74–80CrossRefGoogle Scholar
  6. 6.
    Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic, New York, p 1Google Scholar
  7. 7.
    Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich RV, Jen AKY, Shea KJ (1995) Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem Mater 7(6):1060–1081CrossRefGoogle Scholar
  8. 8.
    Roy RS, Nandi PK (2015) Exploring bridging effect on first hyperpolarizability. RSC Adv 5:103729–103738CrossRefGoogle Scholar
  9. 9.
    Huijts RA, Hesselink GLJ (1989) Length dependence of the second-order polarizability in conjugated organic molecules. Chem Phys Lett 156:209–212CrossRefGoogle Scholar
  10. 10.
    Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., beta., and.gamma.) and bond length alternation. J Am Chem Soc 116(23):10703–10714CrossRefGoogle Scholar
  11. 11.
    Zhang X, Wu HQ, Xu HL, Sun SL, Su ZM (2015) Modulating the charge transfer of D–S–A molecules: structures and NLO properties. J Phys Chem A 119(4):767–773CrossRefGoogle Scholar
  12. 12.
    Lee MJA, Piao M, Jeong M-Y, Lee SH, Kang KM, Jeon S-J, Lim TG, Cho BR (2003) Novel azo octupoles with large first hyperpolarizabilities. J Mater Chem 13:1030–1037CrossRefGoogle Scholar
  13. 13.
    Muhammad S, Xu H-L, Zhong R-L, Su Z-M, Sehemi AGA, Irfan A (2013) Quantum chemical design of nonlinear optical materials by sp2-hybridized carbon nanomaterials: issues and opportunities. J Mater Chem C 1:5439–5449CrossRefGoogle Scholar
  14. 14.
    Csók Z, Sziraczki P, Kollár L, Ngo HM, Rak IL, Caturello NAMS, Albuquerque RQ (2015) Intramolecular cooperative effects in multichromophoric cavitands exhibiting nonlinear optical properties. J Phys Chem C 119(22):12608–12615CrossRefGoogle Scholar
  15. 15.
    Wu K, Snijders JG, Lin C (2002) Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters. J Phys Chem B 106(35):8954–8958CrossRefGoogle Scholar
  16. 16.
    Pilia L, Marinotto D, Pizzotti M, Tessore F, Robertson N (2016) High second-order NLO response exhibited by the first example of polymeric film incorporating a Diimine–Dithiolate square-planar complex: the [Ni(o-phen)(bdt)]. J Phys Chem C120(34):19286–19294Google Scholar
  17. 17.
    Maroulis G (2012) Quantifying the performance of conventional DFT methods on a class of difficult problems: the interaction (Hyper)polarizability of two water molecules as a test case. Int J Quantum Chem 112:2231–2241CrossRefGoogle Scholar
  18. 18.
    Chen W, Li Z-R, Wu D, Gu F-L, Hao X-Y, Wang B-Q, Li R-J, Sun C-C (2004) The static polarizability and first hyperpolarizability of the water trimer anion: ab initio study. J Chem Phys 121(21):10489–10494CrossRefGoogle Scholar
  19. 19.
    Wang JJ, Zhou ZJ, Bai Y, Liu ZB, Li Y, Wu D, Chen W, Li ZR, Sun CC (2012) The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. J Mater Chem 22:9652–9657CrossRefGoogle Scholar
  20. 20.
    Champagne B, Spassova M, Jadin J-B, Kirtman B (2002) Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116:3935CrossRefGoogle Scholar
  21. 21.
    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127(31):10977–10981CrossRefGoogle Scholar
  22. 22.
    Wang FF, Li ZR, Wu D, Wang BQ, Li YZ, Li J, Chen W, Yu GT, Gu FL, Aoki Y (2008) Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n6adz)M‘- (M, M‘= Li, Na, K; n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112(4):1090–1094CrossRefGoogle Scholar
  23. 23.
    Mai J, Gong S, Nan L, Luo Q, Zhiru L (2015) A novel class of compounds—superalkalides:M+(en)3M3 /O (M, M0 = Li, Na, and K; en = ethylenediamine)—with excellent nonlinear optical properties and high stabilities Phys. Chem Chem Phys 17:28754–28764CrossRefGoogle Scholar
  24. 24.
    Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131(33):11833–11840CrossRefGoogle Scholar
  25. 25.
    Hatua K, Nandi PK (2015) Diradical character and second hyperpolarizability of multidecker inverse sandwich complexes of Mg and Ca. Chem Phys Lett 628:1–8CrossRefGoogle Scholar
  26. 26.
    Hatua K, Nandi PK (2013) Beryllium-cyclobutadiene multidecker inverse sandwiches: electronic structure and second-hyperpolarizability. J Phys Chem A 117(47):12581–12589CrossRefGoogle Scholar
  27. 27.
    Fray GI, Saxton RG (1978) The chemistry of cyclooctatetraene and its derivatives. Cambridge University Press, New YorkGoogle Scholar
  28. 28.
    Feixas F, Matito E, Sola M, Poater J (2008) Analysis of Hückel’s [4n + 2] rule through electronic delocalization measures. J Phys Chem A 112(50):13231–13238CrossRefGoogle Scholar
  29. 29.
    Cao T, Ma Y, Yan X, Cheng J, Luo Y, He L, Zhu W (2009) Is free cyclooctatetraene dianion an aromatic system? a quantum chemistry study. J Chem 27:1914–1918Google Scholar
  30. 30.
    Hrovat DA, Borden WT (1992) CASSCF calculations find that a D8h geometry is the transition state for double bond shifting in cyclooctatetraene. 114 (14):5879–5881Google Scholar
  31. 31.
    Jones M Jr (2000) Organic chemistry. Norton, New YorkGoogle Scholar
  32. 32.
    Sokolov AY, Magers DB, Wu JI, Allen WD, Schleyer PR, Schaefer HF (2013) Free cyclooctatetraene dianion: planarity, aromaticity, and theoretical challenges. J Chem Theory Comput 9(10):4436–4443CrossRefGoogle Scholar
  33. 33.
    Katz TJ (1960) The Cycloöctatetraenyl Dianion. J Am Chem Soc 82(14):3784–3785CrossRefGoogle Scholar
  34. 34.
    Wayda AL, Ginsberg AP (1990) Inorganic synthesis, 27th edn. Wiley, New York, p 150CrossRefGoogle Scholar
  35. 35.
    Harriman KLM, Murugesu M (2016) An organolanthanide building block approach to single-molecule magnets. Acc Chem Res 49(6):1158–1167CrossRefGoogle Scholar
  36. 36.
    Hernández DP, López JAM, Pérez RA (2011) Bonding nature and electron delocalization of An(COT)2, An = Th, Pa, U. J Phys Chem A 115(32):8997–9003CrossRefGoogle Scholar
  37. 37.
    Nakajo E, Masuda T, Yabushita S (2016) Theoretical study on the photoelectron spectra of Ln(COT)2 : lanthanide dependence of the metal-ligand interaction. J Phys Chem A. doi: 10.1021/acs.jpca.6b10930 Google Scholar
  38. 38.
    Yanai T, Tew D, Handy N (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson A (2009) Gaussian 09, revision A.02. Gaussian Inc, WallingfordGoogle Scholar
  40. 40.
    Becke AD (1993) A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  41. 41.
    Limacher PA, Mikkelsen KV, Lüthi HP (2009) On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J Chem Phys 130:194114CrossRefGoogle Scholar
  42. 42.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ria Sinha Roy
    • 1
  • Avijit Mondal
    • 1
  • Prasanta K. Nandi
    • 1
  1. 1.Department of ChemistryIndian Institute of Engineering Science and TechnologyShibpurIndia

Personalised recommendations