Skip to main content
Log in

Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Application of ab initio molecular dynamics to study free energy surfaces (FES) is still not commonly performed because of the extensive sampling required. Indeed, it generally necessitates computationally costly simulations of more than several hundreds of picoseconds. To achieve such studies, efficient density functional theory (DFT) formalisms, based on various levels of approximate computational schemes, have been developed, and provide a good alternative to commonly used DFT implementations. We report benchmark results on the conformational change FES of alanine dipeptide obtained with auxiliary density functional theory (ADFT) and second- and third-order density functional tight-binding (DFTB) methods coupled to metadynamics simulations. The influence of an explicit water solvent is also studied with DFTB, which was made possible by its lower computational cost compared to ADFT. Simulations lengths of 2.1 and 15 ns were achieved with ADFT and DFTB, respectively, in a reasonably short computational time. ADFT leads to a free energy difference (ΔF eq-ax) of ∼ −3 kcal mol−1 between the two low energy conformers, C7eq and C7ax, which is lower by only 1.5 kcal mol−1 than the ΔF eq-ax computed with DFTB. The two minima in ADFT FES are separated by an energy barrier of 9 kcal mol−1, which is higher than the DFTB barriers by 2–4 kcal mol−1. Despite these small quantitative differences, the DFTB method reveals FES shapes, confor-mation geometries and energies of the stationary points in good agreement with these found with ADFT. This validates the promising applicability of DFTB to FES of reactions occurring in larger-size systems placed in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Elsevier, Orlando

    Google Scholar 

  2. Chipot C, Pohorille A (2007) Free energy calculations-theory and applications in chemistry and biology. Springer, Berlin

    Book  Google Scholar 

  3. Tuckerman ME, Breu F, Guggenbichler S, Wollmann J (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, New York

    Google Scholar 

  4. Dellago C, Bolhuis PG (2009) Transition path sampling and other advanced simulation techniques for rare events. Adv Polym Sci 221:167–233

    CAS  Google Scholar 

  5. Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28:578–581

    Article  CAS  Google Scholar 

  6. Bartels C, Karplus M (1997) Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J Comput Chem 18:1450–1462

    Article  CAS  Google Scholar 

  7. Kumar S, Rosenberg JM, Bouzida D et al (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  8. Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112:3483–3492

    Article  CAS  Google Scholar 

  9. Cui Q (2002) Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: a critical test with glycine. J Chem Phys 117:4720–4728

    Article  CAS  Google Scholar 

  10. Hu H, Lu Z, Yang W (2007) QM/MM minimum free energy path: methodology and application to triosephosphate isomerase. J Chem Theory Comput 3:390–406

    Article  CAS  Google Scholar 

  11. Leung K, Rempe SB (2005) Ab initio molecular dynamics study of glycine intramolecular proton transfer in water. J Chem Phys 122:184506

    Article  Google Scholar 

  12. Brüssel M, di Dio PJ, Muñiz K, Kirchner B (2011) Comparison of free energy surfaces calculations from ab initio molecular dynamic simulations at the example of two transition metal catalyzed reactions. Int J Mol Sci 12:1389–1409

    Article  Google Scholar 

  13. Ivchenko O, Bachert P, Imhof P (2014) Umbrella sampling of proton transfer in a creatine-water system. Chem Phys Lett 600:51–55

    Article  CAS  Google Scholar 

  14. Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115:9169–9183

    Article  CAS  Google Scholar 

  15. Bolhuis PG, Dellago C, Chandler D (2000) Reaction coordinates of biomolecular isomerization. Proc Natl Acad Sci USA 97:5877–5882

    Article  CAS  Google Scholar 

  16. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    Article  CAS  Google Scholar 

  17. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  Google Scholar 

  18. Laio A, Rodriguez-Fortea A, Gervasio FL et al (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109:6714–6721

    Article  CAS  Google Scholar 

  19. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    Article  CAS  Google Scholar 

  20. Liu P, Kim B, Friesner RA, Berne BJ (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci USA 102:13749–13754

    Article  CAS  Google Scholar 

  21. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125:24106

    Article  Google Scholar 

  22. Gil-Ley A, Bussi G (2015) Enhanced conformational sampling using replica exchange with collective-variable tempering. J Chem Theory Comput 11:1077–1085

    Article  CAS  Google Scholar 

  23. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128:13435–13441

    Article  CAS  Google Scholar 

  24. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:20603

    Article  Google Scholar 

  25. Bonomi M, Parrinello M (2010) Enhanced sampling in the well-tempered ensemble. Phys Rev Lett 104:190601

    Article  CAS  Google Scholar 

  26. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111:4553–4559

    Article  CAS  Google Scholar 

  27. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71:126601

    Article  Google Scholar 

  28. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1:826–843

    Article  CAS  Google Scholar 

  29. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90:238302

    Article  Google Scholar 

  30. Hassanali AA, Cuny J, Verdolino V, Parrinello M (2014) Aqueous solutions: state of the art in ab initio molecular dynamics. Philos Transact A Math Phys Eng Sci 372:20120482

    Article  Google Scholar 

  31. Park JM, Laio A, Iannuzzi M, Parrinello M (2006) Dissociation mechanism of acetic acid in water. J Am Chem Soc 128:11318–11319

    Article  CAS  Google Scholar 

  32. Gunaydin H, Houk KN (2008) Molecular dynamics prediction of the mechanism of ester hydrolysis in water. J Am Chem Soc 130:15232–15233

    Article  CAS  Google Scholar 

  33. Köster AM, Reveles JU, Del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121:3417–3424

    Article  Google Scholar 

  34. Geudtner G, Calaminici P, Carmona-Espíndola J et al (2012) deMon2k. Wiley Interdiscip Rev Comput Mol Sci 2:548–555

    Article  CAS  Google Scholar 

  35. Porezag D, Frauenheim T, Köhler T et al (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 51:12947–12957

    Article  CAS  Google Scholar 

  36. Seifert G, Porezag D, Frauenheim T (1996) Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int J Quantum Chem 58:185–192

    Article  CAS  Google Scholar 

  37. Tribello GA, Bonomi M, Branduardi D et al (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  38. Heine T, Rapacioli M, Patchkovskii S, Frenzel J, Koster A, Calaminici P, Duarte H A, Escalante S, Flores-Moreno R, Goursot A, Reveles JU, Salahub DR, Vela A (2009) The deMon User’s Guide, Version deMon-Nano Experiment 2009. http://demon-nano.ups-tlse.fr/pages/pdf_doc/deMon-UserGuide.pdf

  39. Krishnamurty S, Stefanov M, Mineva T et al (2008) Lipid thermodynamics: melting is molecular. ChemPhysChem 9:2321–2324

    Article  CAS  Google Scholar 

  40. Mineva T, Krishnamurty S, Salahub DR, Goursot A (2013) Temperature dependence of the molecular conformations of dilauroyl phosphatidylcholine: a density functional study. Int J Quantum Chem 113:631–636

    Article  CAS  Google Scholar 

  41. Mineva T, Gaveau P, Galarneau A et al (2011) 14N: a sensitive NMR probe for the study of surfactant-oxide interfaces. J Phys Chem C 115:19293–19302

    Article  CAS  Google Scholar 

  42. Mineva T, Tsoneva Y, Kevorkyants R, Goursot A (2013) 13 C NMR chemical shift calculations of charged surfactants in water—a combined density functional theory (DFT) and molecular dynamics (MD) methodological study. Can J Chem 91:529–537

    Article  CAS  Google Scholar 

  43. Goursot A, Mineva T, Vásquez-Pérez JM et al (2013) Contribution of high-energy conformations to NMR chemical shifts, a DFT-BOMD study. Phys Chem Chem Phys 15:860–867

    Article  CAS  Google Scholar 

  44. Tsoneva Y, Tadjer A, Mineva T (2016) NMR characterization of dilauroyl phosphatidylcholine in adsorbed monolayers at fluid interfaces studied by multiscale computations. Int J Quantum Chem 116:1419–1426

    Article  CAS  Google Scholar 

  45. Oliveira LFL, Cuny J, Morinière M et al (2015) Phase changes of the water hexamer and octamer in the gas phase and adsorbed on polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 17:17079–17089

    Article  CAS  Google Scholar 

  46. Rapacioli M, Simon A, Marshall CCM et al (2015) Cationic methylene–pyrene isomers and isomerization pathways: finite temperature theoretical studies. J Phys Chem A 119:12845–12854

    Article  CAS  Google Scholar 

  47. Elstner M, Porezag D, Jungnickel G et al (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  48. Frauenheim T, Seifert G, Elsterner M et al (2000) A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys Status Solidi 217:41–62

    Article  CAS  Google Scholar 

  49. Frauenheim T, Seifert G, Elstner M et al (2002) Atomistic simulations of complex materials: ground-state and excited-state properties. J Phys Condens Matter 14:3015–3047

    Article  CAS  Google Scholar 

  50. Oliveira AF, Seifert G, Heine T, Duarte HA (2009) Density-functional based tight-binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205

    Article  CAS  Google Scholar 

  51. Seifert G, Joswig J-O (2012) Density-functional tight binding—an approximate density-functional theory method. Wiley Interdiscip Rev Comput Mol Sci 2:456–465

    Article  CAS  Google Scholar 

  52. The DFTB website. http://www.dftb.org/parameters/download

  53. Gaus M, Cui Q, Elstner M (2011) DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J Chem Theory Comput 7:931–948

    Article  CAS  Google Scholar 

  54. Gaus M, Goez A, Elstner M (2013) Parametrization and benchmark of DFTB3 for organic molecules. J Chem Theory Comput 9:338–354

    Article  CAS  Google Scholar 

  55. Riccardi D, König P, Guo H, Cui Q (2008) Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor. Biochemistry 47:2369–2378

    Article  CAS  Google Scholar 

  56. Yang Y, Yu H, Cui Q (2008) Extensive conformational transitions are required to turn on ATP hydrolysis in myosin. J Mol Biol 381:1407–1420

    Article  CAS  Google Scholar 

  57. Yang Y, Cui Q (2009) Does water relay play an important role in phosphoryl transfer reactions? Insights from theoretical study of a model reaction in water and tert-butanol. J Phys Chem B 113:4930–4939

    Article  CAS  Google Scholar 

  58. Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71:4993–4999

    Article  CAS  Google Scholar 

  59. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  60. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511

    Article  Google Scholar 

  61. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  62. Martyna GJ, Klein ML, Tuckerman M (1992) Nose–hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643

    Article  Google Scholar 

  63. Rossky PJ, Karplus M (1979) Solvation. A molecular dynamics study of a dipeptide in water. J Am Chem Soc 101:1913–1937

    Article  CAS  Google Scholar 

  64. Strodel B, Wales DJ (2008) Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide. Chem Phys Lett 466:105–115

    Article  CAS  Google Scholar 

  65. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  66. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:54103

    Article  Google Scholar 

  67. Valsson O, Parrinello M (2014) Variational approach to enhanced sampling and free energy calculations. Phys Rev Lett 113:090601

    Article  Google Scholar 

  68. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  69. Apostolakis J, Ferrara P, Caflisch A (1999) Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water. J Chem Phys 110:2099

    Article  CAS  Google Scholar 

  70. Doshi U, Hamelberg D (2012) Improved statistical sampling and accuracy with accelerated molecular dynamics on rotatable torsions. J Chem Theory Comput 8:4004–4012

    Article  CAS  Google Scholar 

  71. Maupin CM, Aradi B, Voth GA (2010) The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. J Phys Chem B 114:6922–6931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supercomputing facility of CALMIP for generous allocation of computer resources (projects P1320) and HPC resources from GENCI (Grant x2016087369). We also thank the PLUMED developers for their help and advice in plugging PLUMED 2 into deMon2k and deMonNano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonka Mineva.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuny, J., Korchagina, K., Menakbi, C. et al. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study. J Mol Model 23, 72 (2017). https://doi.org/10.1007/s00894-017-3265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3265-4

Keywords

Navigation