Skip to main content

Advertisement

Log in

The “sugar” coarse-grained DNA model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the ”sugar” GC DNA model, and obtain the potentials of the CG interactions between the sites by the ”bottom-up” approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions.

The proposed coarse-grained DNA model allows to reproduce both the B- and A- DNA forms and the transitions between them under corresponding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Appendices A, B, and C in file sugarDNASM.pdf

  2. see files A-DNA.mp4 and B-DNA.mp4 for short parts of the A-DNA and B-DNA trajectories,file A-to-B-2ns.mp4 for A to B transition (the length of the trajectory is 2 ns), and file B-to-A-6ns.mp4 for B to A transition (6 ns); the visualization was made with VMD support. VMD (http://www.ks.uiuc.edu/Research/vmd/) is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign

  3. Andrews A, Rottler J, Plotkin S (2010) A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J Chem Phys 132(3):035105. doi:10.1063/1.3269994

    Article  Google Scholar 

  4. Ȧqvist J (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94(21):8021–8024. doi:10.1021/j100384a009

    Article  Google Scholar 

  5. Arnott S (2006) Historical article: DNA polymorphism and the early history of the double helix. Trends Biochem Sci 31(6):349–354. doi:10.1016/j.tibs.2006.04.004

    Article  CAS  Google Scholar 

  6. Becker N, Everaers R (2007) From rigid base pairs to semiflexible polymers: coarse-graining DNA. Phys Rev E 76(2):021923. doi:10.1103/physreve.76.021923

    Article  Google Scholar 

  7. Brini E, Algaer EA, Ganguly P, Li C, Rodriguez-Ropero F, van der Vegt NFA (2013) Systematic coarse-graining methods for soft matter simulations: a review. Soft Matter 9(7):2108–2119. doi:10.1039/c2sm27201f

  8. Bruant N, Flatters D, Lavery R, Genest D (1999) From atomic to mesoscopic descriptions of the internal dynamics of DNA. Biophys J 77(5):2366–2376. doi:10.1016/s0006-3495(99)77074-8

    Article  CAS  Google Scholar 

  9. Cheatham III T, Crowley M, Fox T, Kollman P (1997) A molecular level picture of the stabilization of A-DNA in mixed ethanol–water solutions. PNAS 94(18):9626–9630. http://www.pnas.org/content/94/18/9626.abstract

    Article  CAS  Google Scholar 

  10. Chocholousova J, Feig M (2006) Implicit solvent simulations of DNA and DNA–protein complexes: agreement with explicit solvent vs experiment. J Phys Chem B 110(34):17240–17251. doi:10.1021/jp0627675

    Article  CAS  Google Scholar 

  11. Cifra P, Benková Z, Bleha T (2009) Chain extension of DNA Confined in channels. J Phys Chem B 113(7):1843–1851. doi:10.1021/jp806126r

    Article  CAS  Google Scholar 

  12. Coleman BD, Olson WK, Swigon D (2003) Theory of sequence-dependent DNA elasticity. J Chem Phys 118(15):7127–7140. doi:10.1063/1.1559690

    Article  CAS  Google Scholar 

  13. Dans PD, Walther J, Gómez H, Orozco M (2016) Multiscale simulation of DNA. Curr Opin Struct Biol 37:29–45. doi:10.1016/j.sbi.2015.11.011

    Article  CAS  Google Scholar 

  14. Dans PD, Zeida A, Machado MR, Pantano S (2010) A coarse-grained model for atomic-detailed DNA simulations with explicit electrostatics. J Chem Theory Comput 6(5):1711–1725. doi:10.1021/ct900653p

    Article  CAS  Google Scholar 

  15. Doi K, Haga T, Shintaku H, Kawano S (2010) Development of coarse-graining DNA models for single-nucleotide resolution analysis. Philos Trans R Soc London, Ser A 368 (1920):2615–2628. doi:10.1098/rsta.2010.0068

    Article  CAS  Google Scholar 

  16. Drukker K, Wu G, Schatz GC (2001) Model simulations of DNA denaturation dynamics. J Chem Phys 114(1):579–590. doi:10.1063/1.1329137

    Article  CAS  Google Scholar 

  17. Feig M, Pettitt B (1997) Experiment versus force fields: DNA conformation from molecular dynamics simulations. J Phys Chem B 101(38):7361–7363. doi:10.1021/jp971180a

    Article  CAS  Google Scholar 

  18. Feig M, Pettitt B (1999) Sodium and chlorine ions as part of the DNA solvation shell. Biophys J 77 (4):1769–1781. doi:10.1016/s0006-3495(99)77023-2

    Article  CAS  Google Scholar 

  19. Foley TT, Shell MS, Noid WG (2015) The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 143(24):243104. doi:10.1063/1.4929836

    Article  Google Scholar 

  20. Freeman G, Hinckley D, de Pablo J (2011) A coarse-grain three-site-per-nucleotide model for DNA with explicit ions. J Chem Phys 135(1):165104. doi:10.1063/1.3652956

  21. Gaillard T, Case D (2011) Evaluation of DNA force fields in implicit solvation. J Chem Theory Comput 7 (10):3181–3198. doi:10.1021/ct200384r

    Article  CAS  Google Scholar 

  22. Gelbin A, Schneider B, Clowney L, Hsieh SH, Olson W, Berman H (1996) Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc 118(3):519–529. doi:10.1021/ja9528846

    Article  CAS  Google Scholar 

  23. Giambaşu G, Luchko T, Herschlag D, York D, Case D (2015) Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 106(4):883–894. doi:10.1016/j.bpj.2014.01.021

    Article  Google Scholar 

  24. Hartmann B, Piazzola D, Lavery R (1993) BI-BII transitions in B-DNA. Nucleic Acids Res 21(3):561–568. doi:10.1093/nar/21.3.561

    Article  CAS  Google Scholar 

  25. Hess B, Holm C, van der Vegt N (2006) Modeling multibody effects in ionic solutions with a concentration-dependent dielectric permittivity. Phys Rev Lett 96(14):147801. doi:10.1103/physrevlett.96.147801

  26. Hinckley DM, de Pablo JJ (2015) Coarse-grained ions for nucleic acid modeling. J Chem Theory Comput 11(11):5436–5446. doi:10.1021/acs.jctc.5b00341

  27. Hingerty B, Ritchie R, Ferrell T, Turner J (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24(3):427–439. doi:10.1002/bip.360240302

    Article  CAS  Google Scholar 

  28. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  29. Hsu CW, Fyta M, Lakatos G, Melchionna S, Kaxiras E (2012) Ab initio determination of coarse-grained interactions in double-stranded DNA. J Chem Phys 137(10):105102. doi:10.1063/1.4748105

    Article  Google Scholar 

  30. “ideal” DNA structures constructed by GLACTONE program according to averaged X-ray data, see G.R. Parslow, E.J. Wood (1998): Glactone - Georgia State University. Biochem Educ 26(3):226. doi:10.1016/s0307-4412(98)00194-0

  31. Ivanov V, Krylov D (1992) A-DNA in solution as studied by diverse approaches. Methods Enzymol 211:111–127. doi:10.1016/0076-6879(92)11008-7

    Article  CAS  Google Scholar 

  32. Ivanov V, Minchenkova L, Schyolkina A, Poletayev A (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12(1):89–110. doi:10.1002/bip.1973.360120109

    Article  CAS  Google Scholar 

  33. Jayaram B, Sprous D, Young MA, Beveridge DL (1998) Free energy analysis of the conformational preferences of A and B forms of DNA in solution. J Am Chem Soc 120(41):10629–10633. doi:10.1021/ja981307p

    Article  CAS  Google Scholar 

  34. Jeon J, Sung W (2014) An effective mesoscopic model of double-stranded DNA. J Biol Phys 40(1):1–14. doi:10.1007/s10867-013-9333-9

    Article  CAS  Google Scholar 

  35. Joung I, Cheatham III T (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041. doi:10.1021/jp8001614

    Article  CAS  Google Scholar 

  36. Karimi-Varzaneh H, Muller-Plathe F (2012) Coarse-grained modeling for macromolecular chemistry. Top Curr Chem 307:295– 321

    Article  CAS  Google Scholar 

  37. Kikot I, Savin A, Zubova E, Mazo M, Gusarova E, Manevitch L, Onufriev A (2011) New coarse-grained DNA model. Biophysics 56(3):387–392. doi:10.1134/s0006350911030109

    Article  Google Scholar 

  38. Kikot I, Zubova E, Mazo M, Kovaleva N, Manevitch L (2010) About constructing the new coarse-grained DNA model. In: Proceedings Conference Advanced Problems In Mechanics-2010, pp. 299–306. Institute for Problems in Mechanical Engineering RAS. http://apm-conf.spb.ru/old/2010/proceedings.php

  39. Kim J, Jeon J, Sung W (2008) A breathing wormlike chain model on DNA denaturation and bubble: effects of stacking interactions. J Chem Phys 128(5):055101

    Article  Google Scholar 

  40. Knotts IV T, Rathore N, Schwartz D, de Pablo J (2007) A coarse-grain model for DNA. J Chem Phys 8:084901. doi:10.1063/1.2431804

  41. Korolev N, Nordenskiöld L, Lyubartsev AP (2016) Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Adv Colloid Interf Sci 232:36–48. doi:10.1016/j.cis.2016.02.002

    Article  CAS  Google Scholar 

  42. Lebrun A, Lavery R (1999) Modeling DNA deformations induced by minor groove binding proteins. Biopolymers 49(5):341–353. doi:10.1002/(sici)1097-0282(19990415)49:5%3C341::aid-bip1%3E3.0.co;2-c

    Article  CAS  Google Scholar 

  43. Linak MC, Tourdot R, Dorfman KD (2011) Moving beyond Watson-Crick models of coarse-grained DNA dynamics. J Chem Phys 135(20):205102. doi:10.1063/1.3662137

    Article  Google Scholar 

  44. Lu XJ, Shakked Z, Olson W (2000) A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 300(4):819–840. doi:10.1006/jmbi.2000.3690

    Article  CAS  Google Scholar 

  45. Lyubartsev A, Laaksonen A (1999) Effective potentials for ion–DNA interactions. J Chem Phys 111 (24):11207. doi:10.1063/1.480476

    Article  CAS  Google Scholar 

  46. Lyubartsev A, Marčelja S (2002) Evaluation of effective ion-ion potentials in aqueous electrolytes 65 (4):041202. doi:10.1103/physreve.65.041202

  47. Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2010) Coarse-grained model of nucleic acid bases. J Comput Chem 31(8):1644–1655. doi:10.1002/jcc.21448

    CAS  Google Scholar 

  48. Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2014) Dna duplex formation with a coarse-grained model. J Chem Theory Comput 10(11):5020–5035. doi:10.1021/ct4006689

    Article  CAS  Google Scholar 

  49. Maffeo C, Ngo TTM, Ha T, Aksimentiev A (2014) A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J Chem Theory Comput 10(8):2891–2896. doi:10.1021/ct500193u

    Article  CAS  Google Scholar 

  50. Markegard CB, Fu IW, Reddy KA, Nguyen HD (2015) Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment. J Phys Chem B 119(5):1823–1834. doi:10.1021/jp509857k

    Article  CAS  Google Scholar 

  51. Mazur A (2009) Kinetic and thermodynamic DNA elasticity at micro- and mesoscopic scales. J Phys Chem B 113(7):2077–2089. doi:10.1021/jp8098945

    Article  CAS  Google Scholar 

  52. Mazur AK (2003) Titration in silico of reversible B ⇔ A transitions in DNA. J Am Chem Soc 125(26):7849–7859. doi:10.1021/ja034550j

    Article  CAS  Google Scholar 

  53. Mazur J, Jernigan R (1991) Distance-dependent dielectric constants and their application to double-helical DNA. Biopolymers 31(13):1615–1629. doi:10.1002/bip.360311316

    Article  CAS  Google Scholar 

  54. Mergell B, Ejtehadi MR, Everaers R (2003) Modeling DNA structure, elasticity, and deformations at the base-pair level. Phys Rev E 68(2):021911. doi:10.1103/physreve.68.021911

    Article  Google Scholar 

  55. Morriss-Andrews A, Rottler J, Plotkin SS (2010) A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J Chem Phys 132(3):035105. doi:10.1063/1.3269994

    Article  Google Scholar 

  56. Muralidhar A, Tree DR, Dorfman KD (2014) Backfolding of wormlike chains confined in nanochannels. Macromolecules 47(23):8446–8458. doi:10.1021/ma501687k

    Article  CAS  Google Scholar 

  57. Naômé A, Laaksonen A, Vercauteren DP (2014) A solvent-mediated coarse-grained model of DNA derived with the systematic Newton inversion method. J Chem Theory Comput 10(8):3541–3549. doi:10.1021/ct500222s

    Article  Google Scholar 

  58. Neidle S (2008) Principles of Nucleic Acid Structure. Elsevier Academic Press. http://www.elsevier.com/books/principles-of-nucleic-acid-structure/neidle/978-0-12-369507-9

  59. Nishimura Y, Torigoe C, Tsuboi M (1986) Salt induced B-A transition of poly(dG).poly(dC) and the stabilization of A form by its methylation. Nucleic Acids Res 14:2737. http://nar.oxfordjournals.org/content/14/6/2737.short

    Article  CAS  Google Scholar 

  60. Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):090901. doi:10.1063/1.4818908

    Article  CAS  Google Scholar 

  61. Noid WG (2013) Systematic methods for structurally consistent coarse-grained models. In: Monticelli L, Salonen E (eds) Biomolecular Simulations, Methods in Molecular Biology, vol. 924, pp. 487–531. Humana Press. doi:10.1007/978-1-62703-017-5_19

  62. Noy A, Perez A, Laughton C, Orozco M (2007) Theoretical study of large conformational transitions in DNA: the B to A conformational change in water and ethanol/water. Nucleic Acids Res 35(10):3330–3338. doi:10.1093/nar/gkl1135

    Article  CAS  Google Scholar 

  63. Noy A, Soteras I, Luque F, Orozco M (2009) The impact of monovalent ion force field model in nucleic acids simulations. Phys Chem Chem Phys 11:10596–10607. doi:10.1039/b912067j

    Article  CAS  Google Scholar 

  64. Olson WK, Zhurkin VB (2000) Modeling DNA deformations. Curr Opin Struct Biol 10(3):286–297. doi:10.1016/s0959-440x(00)00086-5

    Article  CAS  Google Scholar 

  65. Ouldridge TE, Louis AA, Doye JPK (2010) DNA nanotweezers studied with a coarse-grained model of DNA. Phys Rev Lett 104(17):178101. doi:10.1103/physrevlett.104.178101

    Article  Google Scholar 

  66. Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134(8):085,101. doi:10.1063/1.3552946

    Article  Google Scholar 

  67. Perez A, Marchan I, Svozil D, Sponer J, Cheatham III T, Laughton C, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92 (11):3817–3829. doi:10.1529/biophysj.106.097782

    Article  CAS  Google Scholar 

  68. Potoyan D, Savelyev A, Papoian G (2013) Recent successes in coarse-grained modeling of DNA. WIREs Comp Mol Sci 3(1):69–83. doi:10.1002/wcms.1114

    Article  CAS  Google Scholar 

  69. Poulain P, Saladin A, Hartmann B, Prévost C (2008) Insights on protein-DNA recognition by coarse grain modelling. J Comput Chem 29(15):2582–2592. doi:10.1002/jcc.21014

    Article  CAS  Google Scholar 

  70. Prabhu N, Panda M, Yang Q, Sharp K (2008) Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J Comp Chem 29(7):1113–1130. doi:10.1002/jcc.20874

    Article  CAS  Google Scholar 

  71. Priyakumar U, MacKerell A (2006) Computational approaches for investigating base flipping in oligonucleotides. Chem Rev 106(2):489–505. doi:10.1021/cr040475z

    Article  CAS  Google Scholar 

  72. Savelyev A, Papoian G (2009) Molecular renormalization group coarse-graining of electrolyte solutions: application to aqueous NaCl and KCl. J Phys Chem B 113(22):7785–7793. doi:10.1021/jp9005058

    Article  CAS  Google Scholar 

  73. Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of polymer chains: application to double-stranded DNA. Biophys J 96(10):4044–4052. doi:10.1016/j.bpj.2009.02.067

    Article  CAS  Google Scholar 

  74. Savin A, Kikot I, Mazo M, Onufriev A (2013) Two-phase stretching of molecular chains. PNAS 110(8):2816–2821. doi:10.1073/pnas.1218677110

    Article  CAS  Google Scholar 

  75. Savin A, Mazo M, Kikot I, Manevitch L, Onufriev A (2011) Heat conductivity of the DNA double helix. Phys Rev B 83(24):245406. doi:10.1103/physrevb.83.245406

    Article  Google Scholar 

  76. Shen JW, Li C, van der Vegt N, Peter C (2011) Transferability of coarse-grained potentials: implicit solvent models for hydrated ions. J Chem Theory Comp 7:1916–1927 . doi:10.1021/ct2001396

  77. Sim AYL, Minary P, Levitt M (2012) Modeling nucleic acids. Curr Opin Struct Biol 22(3):273–278. doi:10.1016/j.sbi.2012.03.012

    Article  CAS  Google Scholar 

  78. Smith D, Dang L (1994) Computer simulations of NaCl association in polarizable water. J Chem Phys 100 (5):3757–3766. doi:10.1063/1.466363

    Article  CAS  Google Scholar 

  79. Sponer J, Jurecka P, Marchan I, Luque F, Orozco M, Hobza P (2006) Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps. Chem Eur J 12(10):2854–2865. doi:10.1002/chem.200501239

    Article  CAS  Google Scholar 

  80. Sprous D, Young MA, Beveridge DL (1998) Molecular dynamics studies of the conformational preferences of a DNA double helix in water and an ethanol/water mixture: theoretical considerations of the A-B transition. J Phys Chem B 102(23):4658–4667. doi:10.1021/jp980548g

    Article  CAS  Google Scholar 

  81. Srinivasan J, Trevathan M, Beroza P, Case D (1999) Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor Chem Acc 101(6):426–434. doi:10.1007/s002140050460

    Article  CAS  Google Scholar 

  82. Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22 (2):130–137. doi:10.1016/j.sbi.2012.01.010

    Article  CAS  Google Scholar 

  83. Tepper HL, Voth GA (2005) A coarse-grained model for double-helix molecules in solution: spontaneous helix formation and equilibrium properties. J Chem Phys 122(12):124906. doi:10.1063/1.1869417

    Article  Google Scholar 

  84. Theodorakis PE, Dellago C, Kahl G (2013) A coarse-grained model for DNA-functionalized spherical colloids, revisited: effective pair potential from parallel replica simulations. J Chem Phys 138(2):025101. doi:10.1063/1.4773920

    Article  Google Scholar 

  85. Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym 49 (2-3):61–74. doi:10.1002/(sici)1521-4044(199802)49:2/3%3C61::aid-apol61%3E3.0.co;2-v

    Article  Google Scholar 

  86. Varnai P, Djuranovic D, Lavery R, Hartmann B (2002) Alpha/gamma transitions in the B-DNA backbone. Nucleic Acids Res 30(24):5398–5406. doi:10.1093/nar/gkf680

    Article  CAS  Google Scholar 

  87. Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA (2012) Sequence-dependent thermodynamics of a coarse-grained DNA model. J Chem Phys 137(13):135101. doi:10.1063/1.4754132

    Article  Google Scholar 

  88. Wang J, Cieplak P, Kollman P (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem 21(12):1049–1074. doi:10.1002/1096-987x(200009)21:12%3C1049::aid-jcc3%3E3.0.co;2-f

  89. Wang J, Gao H (2005) A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement. J Chem Phys 123(8):084906. doi:10.1063/1.2008233

    Article  Google Scholar 

  90. Wang L, Hingerty B, Srinivasan A, Olson W, Broyde S (2002) Accurate representation of B-DNA double helical structure with implicit solvent and counterions. Biophys J 83(1):382–406. doi:10.1016/s0006-3495(02)75177-1

    Article  CAS  Google Scholar 

  91. Wang Y, Tree DR, Dorfman KD (2011) Simulation of DNA extension in nanochannels. Macromolecules 44(16):6594–6604. doi:10.1021/ma201277e

    Article  CAS  Google Scholar 

  92. Yang L, Pettitt B (1996) B to A transition of DNA on the nanosecond time scale. J Phys Chem 100 (7):2564–2566. doi:10.1021/jp953080f

    Article  CAS  Google Scholar 

  93. Yin Y, Sieradzan AK, Liwo A, He Y, Scheraga HA (2015) Physics-based potentials for coarse-grained modeling of protein–DNA interactions. J Chem Theory Comput 11(4):1792–1808. doi:10.1021/ct5009558

    Article  CAS  Google Scholar 

  94. Yoo J, Aksimentiev A (2012) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3(1):45–50. doi:10.1021/jz201501a

    Article  CAS  Google Scholar 

  95. Zacharias M (2003) Protein–protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 12(6):1271–1282. doi:10.1110/ps.0239303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Alexey Onufriev who obtained an all-atom trajectory of B-DNA in water for us; Prof. Modesto Orozco and Dr. Agnes Noy who kindly granted us the trajectory of A-DNA [62]; and U. Deva Priyakumar who sent us .pdb files of DNA molecule with an opening base [71]. For MD simulations, we used (properly modified) program written by Dr. A.V. Savin [74, 75].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zubova.

Additional information

The work was supported by the Russian Science Foundation (award 16-13-10302). The simulations were carried out at the Joint Supercomputer Center of Russian Academy of Sciences.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 596 KB)

(MP4 882 KB)

(MP4 1.10 MB)

(MP4 536 KB)

(MP4 1.45 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, N.A., Koroleva (Kikot), I.P., Mazo, M.A. et al. The “sugar” coarse-grained DNA model. J Mol Model 23, 66 (2017). https://doi.org/10.1007/s00894-017-3209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3209-z

Keywords

Navigation