Abstract
More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the ”sugar” GC DNA model, and obtain the potentials of the CG interactions between the sites by the ”bottom-up” approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions.
Similar content being viewed by others
References
Appendices A, B, and C in file sugarDNASM.pdf
see files A-DNA.mp4 and B-DNA.mp4 for short parts of the A-DNA and B-DNA trajectories,file A-to-B-2ns.mp4 for A to B transition (the length of the trajectory is 2 ns), and file B-to-A-6ns.mp4 for B to A transition (6 ns); the visualization was made with VMD support. VMD (http://www.ks.uiuc.edu/Research/vmd/) is developed with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign
Andrews A, Rottler J, Plotkin S (2010) A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J Chem Phys 132(3):035105. doi:10.1063/1.3269994
Ȧqvist J (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94(21):8021–8024. doi:10.1021/j100384a009
Arnott S (2006) Historical article: DNA polymorphism and the early history of the double helix. Trends Biochem Sci 31(6):349–354. doi:10.1016/j.tibs.2006.04.004
Becker N, Everaers R (2007) From rigid base pairs to semiflexible polymers: coarse-graining DNA. Phys Rev E 76(2):021923. doi:10.1103/physreve.76.021923
Brini E, Algaer EA, Ganguly P, Li C, Rodriguez-Ropero F, van der Vegt NFA (2013) Systematic coarse-graining methods for soft matter simulations: a review. Soft Matter 9(7):2108–2119. doi:10.1039/c2sm27201f
Bruant N, Flatters D, Lavery R, Genest D (1999) From atomic to mesoscopic descriptions of the internal dynamics of DNA. Biophys J 77(5):2366–2376. doi:10.1016/s0006-3495(99)77074-8
Cheatham III T, Crowley M, Fox T, Kollman P (1997) A molecular level picture of the stabilization of A-DNA in mixed ethanol–water solutions. PNAS 94(18):9626–9630. http://www.pnas.org/content/94/18/9626.abstract
Chocholousova J, Feig M (2006) Implicit solvent simulations of DNA and DNA–protein complexes: agreement with explicit solvent vs experiment. J Phys Chem B 110(34):17240–17251. doi:10.1021/jp0627675
Cifra P, Benková Z, Bleha T (2009) Chain extension of DNA Confined in channels. J Phys Chem B 113(7):1843–1851. doi:10.1021/jp806126r
Coleman BD, Olson WK, Swigon D (2003) Theory of sequence-dependent DNA elasticity. J Chem Phys 118(15):7127–7140. doi:10.1063/1.1559690
Dans PD, Walther J, Gómez H, Orozco M (2016) Multiscale simulation of DNA. Curr Opin Struct Biol 37:29–45. doi:10.1016/j.sbi.2015.11.011
Dans PD, Zeida A, Machado MR, Pantano S (2010) A coarse-grained model for atomic-detailed DNA simulations with explicit electrostatics. J Chem Theory Comput 6(5):1711–1725. doi:10.1021/ct900653p
Doi K, Haga T, Shintaku H, Kawano S (2010) Development of coarse-graining DNA models for single-nucleotide resolution analysis. Philos Trans R Soc London, Ser A 368 (1920):2615–2628. doi:10.1098/rsta.2010.0068
Drukker K, Wu G, Schatz GC (2001) Model simulations of DNA denaturation dynamics. J Chem Phys 114(1):579–590. doi:10.1063/1.1329137
Feig M, Pettitt B (1997) Experiment versus force fields: DNA conformation from molecular dynamics simulations. J Phys Chem B 101(38):7361–7363. doi:10.1021/jp971180a
Feig M, Pettitt B (1999) Sodium and chlorine ions as part of the DNA solvation shell. Biophys J 77 (4):1769–1781. doi:10.1016/s0006-3495(99)77023-2
Foley TT, Shell MS, Noid WG (2015) The impact of resolution upon entropy and information in coarse-grained models. J Chem Phys 143(24):243104. doi:10.1063/1.4929836
Freeman G, Hinckley D, de Pablo J (2011) A coarse-grain three-site-per-nucleotide model for DNA with explicit ions. J Chem Phys 135(1):165104. doi:10.1063/1.3652956
Gaillard T, Case D (2011) Evaluation of DNA force fields in implicit solvation. J Chem Theory Comput 7 (10):3181–3198. doi:10.1021/ct200384r
Gelbin A, Schneider B, Clowney L, Hsieh SH, Olson W, Berman H (1996) Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc 118(3):519–529. doi:10.1021/ja9528846
Giambaşu G, Luchko T, Herschlag D, York D, Case D (2015) Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 106(4):883–894. doi:10.1016/j.bpj.2014.01.021
Hartmann B, Piazzola D, Lavery R (1993) BI-BII transitions in B-DNA. Nucleic Acids Res 21(3):561–568. doi:10.1093/nar/21.3.561
Hess B, Holm C, van der Vegt N (2006) Modeling multibody effects in ionic solutions with a concentration-dependent dielectric permittivity. Phys Rev Lett 96(14):147801. doi:10.1103/physrevlett.96.147801
Hinckley DM, de Pablo JJ (2015) Coarse-grained ions for nucleic acid modeling. J Chem Theory Comput 11(11):5436–5446. doi:10.1021/acs.jctc.5b00341
Hingerty B, Ritchie R, Ferrell T, Turner J (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24(3):427–439. doi:10.1002/bip.360240302
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725. doi:10.1002/prot.21123
Hsu CW, Fyta M, Lakatos G, Melchionna S, Kaxiras E (2012) Ab initio determination of coarse-grained interactions in double-stranded DNA. J Chem Phys 137(10):105102. doi:10.1063/1.4748105
“ideal” DNA structures constructed by GLACTONE program according to averaged X-ray data, see G.R. Parslow, E.J. Wood (1998): Glactone - Georgia State University. Biochem Educ 26(3):226. doi:10.1016/s0307-4412(98)00194-0
Ivanov V, Krylov D (1992) A-DNA in solution as studied by diverse approaches. Methods Enzymol 211:111–127. doi:10.1016/0076-6879(92)11008-7
Ivanov V, Minchenkova L, Schyolkina A, Poletayev A (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12(1):89–110. doi:10.1002/bip.1973.360120109
Jayaram B, Sprous D, Young MA, Beveridge DL (1998) Free energy analysis of the conformational preferences of A and B forms of DNA in solution. J Am Chem Soc 120(41):10629–10633. doi:10.1021/ja981307p
Jeon J, Sung W (2014) An effective mesoscopic model of double-stranded DNA. J Biol Phys 40(1):1–14. doi:10.1007/s10867-013-9333-9
Joung I, Cheatham III T (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041. doi:10.1021/jp8001614
Karimi-Varzaneh H, Muller-Plathe F (2012) Coarse-grained modeling for macromolecular chemistry. Top Curr Chem 307:295– 321
Kikot I, Savin A, Zubova E, Mazo M, Gusarova E, Manevitch L, Onufriev A (2011) New coarse-grained DNA model. Biophysics 56(3):387–392. doi:10.1134/s0006350911030109
Kikot I, Zubova E, Mazo M, Kovaleva N, Manevitch L (2010) About constructing the new coarse-grained DNA model. In: Proceedings Conference Advanced Problems In Mechanics-2010, pp. 299–306. Institute for Problems in Mechanical Engineering RAS. http://apm-conf.spb.ru/old/2010/proceedings.php
Kim J, Jeon J, Sung W (2008) A breathing wormlike chain model on DNA denaturation and bubble: effects of stacking interactions. J Chem Phys 128(5):055101
Knotts IV T, Rathore N, Schwartz D, de Pablo J (2007) A coarse-grain model for DNA. J Chem Phys 8:084901. doi:10.1063/1.2431804
Korolev N, Nordenskiöld L, Lyubartsev AP (2016) Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Adv Colloid Interf Sci 232:36–48. doi:10.1016/j.cis.2016.02.002
Lebrun A, Lavery R (1999) Modeling DNA deformations induced by minor groove binding proteins. Biopolymers 49(5):341–353. doi:10.1002/(sici)1097-0282(19990415)49:5%3C341::aid-bip1%3E3.0.co;2-c
Linak MC, Tourdot R, Dorfman KD (2011) Moving beyond Watson-Crick models of coarse-grained DNA dynamics. J Chem Phys 135(20):205102. doi:10.1063/1.3662137
Lu XJ, Shakked Z, Olson W (2000) A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 300(4):819–840. doi:10.1006/jmbi.2000.3690
Lyubartsev A, Laaksonen A (1999) Effective potentials for ion–DNA interactions. J Chem Phys 111 (24):11207. doi:10.1063/1.480476
Lyubartsev A, Marčelja S (2002) Evaluation of effective ion-ion potentials in aqueous electrolytes 65 (4):041202. doi:10.1103/physreve.65.041202
Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2010) Coarse-grained model of nucleic acid bases. J Comput Chem 31(8):1644–1655. doi:10.1002/jcc.21448
Maciejczyk M, Spasic A, Liwo A, Scheraga HA (2014) Dna duplex formation with a coarse-grained model. J Chem Theory Comput 10(11):5020–5035. doi:10.1021/ct4006689
Maffeo C, Ngo TTM, Ha T, Aksimentiev A (2014) A coarse-grained model of unstructured single-stranded DNA derived from atomistic simulation and single-molecule experiment. J Chem Theory Comput 10(8):2891–2896. doi:10.1021/ct500193u
Markegard CB, Fu IW, Reddy KA, Nguyen HD (2015) Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment. J Phys Chem B 119(5):1823–1834. doi:10.1021/jp509857k
Mazur A (2009) Kinetic and thermodynamic DNA elasticity at micro- and mesoscopic scales. J Phys Chem B 113(7):2077–2089. doi:10.1021/jp8098945
Mazur AK (2003) Titration in silico of reversible B ⇔ A transitions in DNA. J Am Chem Soc 125(26):7849–7859. doi:10.1021/ja034550j
Mazur J, Jernigan R (1991) Distance-dependent dielectric constants and their application to double-helical DNA. Biopolymers 31(13):1615–1629. doi:10.1002/bip.360311316
Mergell B, Ejtehadi MR, Everaers R (2003) Modeling DNA structure, elasticity, and deformations at the base-pair level. Phys Rev E 68(2):021911. doi:10.1103/physreve.68.021911
Morriss-Andrews A, Rottler J, Plotkin SS (2010) A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. J Chem Phys 132(3):035105. doi:10.1063/1.3269994
Muralidhar A, Tree DR, Dorfman KD (2014) Backfolding of wormlike chains confined in nanochannels. Macromolecules 47(23):8446–8458. doi:10.1021/ma501687k
Naômé A, Laaksonen A, Vercauteren DP (2014) A solvent-mediated coarse-grained model of DNA derived with the systematic Newton inversion method. J Chem Theory Comput 10(8):3541–3549. doi:10.1021/ct500222s
Neidle S (2008) Principles of Nucleic Acid Structure. Elsevier Academic Press. http://www.elsevier.com/books/principles-of-nucleic-acid-structure/neidle/978-0-12-369507-9
Nishimura Y, Torigoe C, Tsuboi M (1986) Salt induced B-A transition of poly(dG).poly(dC) and the stabilization of A form by its methylation. Nucleic Acids Res 14:2737. http://nar.oxfordjournals.org/content/14/6/2737.short
Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):090901. doi:10.1063/1.4818908
Noid WG (2013) Systematic methods for structurally consistent coarse-grained models. In: Monticelli L, Salonen E (eds) Biomolecular Simulations, Methods in Molecular Biology, vol. 924, pp. 487–531. Humana Press. doi:10.1007/978-1-62703-017-5_19
Noy A, Perez A, Laughton C, Orozco M (2007) Theoretical study of large conformational transitions in DNA: the B to A conformational change in water and ethanol/water. Nucleic Acids Res 35(10):3330–3338. doi:10.1093/nar/gkl1135
Noy A, Soteras I, Luque F, Orozco M (2009) The impact of monovalent ion force field model in nucleic acids simulations. Phys Chem Chem Phys 11:10596–10607. doi:10.1039/b912067j
Olson WK, Zhurkin VB (2000) Modeling DNA deformations. Curr Opin Struct Biol 10(3):286–297. doi:10.1016/s0959-440x(00)00086-5
Ouldridge TE, Louis AA, Doye JPK (2010) DNA nanotweezers studied with a coarse-grained model of DNA. Phys Rev Lett 104(17):178101. doi:10.1103/physrevlett.104.178101
Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134(8):085,101. doi:10.1063/1.3552946
Perez A, Marchan I, Svozil D, Sponer J, Cheatham III T, Laughton C, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92 (11):3817–3829. doi:10.1529/biophysj.106.097782
Potoyan D, Savelyev A, Papoian G (2013) Recent successes in coarse-grained modeling of DNA. WIREs Comp Mol Sci 3(1):69–83. doi:10.1002/wcms.1114
Poulain P, Saladin A, Hartmann B, Prévost C (2008) Insights on protein-DNA recognition by coarse grain modelling. J Comput Chem 29(15):2582–2592. doi:10.1002/jcc.21014
Prabhu N, Panda M, Yang Q, Sharp K (2008) Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules. J Comp Chem 29(7):1113–1130. doi:10.1002/jcc.20874
Priyakumar U, MacKerell A (2006) Computational approaches for investigating base flipping in oligonucleotides. Chem Rev 106(2):489–505. doi:10.1021/cr040475z
Savelyev A, Papoian G (2009) Molecular renormalization group coarse-graining of electrolyte solutions: application to aqueous NaCl and KCl. J Phys Chem B 113(22):7785–7793. doi:10.1021/jp9005058
Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of polymer chains: application to double-stranded DNA. Biophys J 96(10):4044–4052. doi:10.1016/j.bpj.2009.02.067
Savin A, Kikot I, Mazo M, Onufriev A (2013) Two-phase stretching of molecular chains. PNAS 110(8):2816–2821. doi:10.1073/pnas.1218677110
Savin A, Mazo M, Kikot I, Manevitch L, Onufriev A (2011) Heat conductivity of the DNA double helix. Phys Rev B 83(24):245406. doi:10.1103/physrevb.83.245406
Shen JW, Li C, van der Vegt N, Peter C (2011) Transferability of coarse-grained potentials: implicit solvent models for hydrated ions. J Chem Theory Comp 7:1916–1927 . doi:10.1021/ct2001396
Sim AYL, Minary P, Levitt M (2012) Modeling nucleic acids. Curr Opin Struct Biol 22(3):273–278. doi:10.1016/j.sbi.2012.03.012
Smith D, Dang L (1994) Computer simulations of NaCl association in polarizable water. J Chem Phys 100 (5):3757–3766. doi:10.1063/1.466363
Sponer J, Jurecka P, Marchan I, Luque F, Orozco M, Hobza P (2006) Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps. Chem Eur J 12(10):2854–2865. doi:10.1002/chem.200501239
Sprous D, Young MA, Beveridge DL (1998) Molecular dynamics studies of the conformational preferences of a DNA double helix in water and an ethanol/water mixture: theoretical considerations of the A-B transition. J Phys Chem B 102(23):4658–4667. doi:10.1021/jp980548g
Srinivasan J, Trevathan M, Beroza P, Case D (1999) Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor Chem Acc 101(6):426–434. doi:10.1007/s002140050460
Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22 (2):130–137. doi:10.1016/j.sbi.2012.01.010
Tepper HL, Voth GA (2005) A coarse-grained model for double-helix molecules in solution: spontaneous helix formation and equilibrium properties. J Chem Phys 122(12):124906. doi:10.1063/1.1869417
Theodorakis PE, Dellago C, Kahl G (2013) A coarse-grained model for DNA-functionalized spherical colloids, revisited: effective pair potential from parallel replica simulations. J Chem Phys 138(2):025101. doi:10.1063/1.4773920
Tschop W, Kremer K, Batoulis J, Burger T, Hahn O (1998) Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym 49 (2-3):61–74. doi:10.1002/(sici)1521-4044(199802)49:2/3%3C61::aid-apol61%3E3.0.co;2-v
Varnai P, Djuranovic D, Lavery R, Hartmann B (2002) Alpha/gamma transitions in the B-DNA backbone. Nucleic Acids Res 30(24):5398–5406. doi:10.1093/nar/gkf680
Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA (2012) Sequence-dependent thermodynamics of a coarse-grained DNA model. J Chem Phys 137(13):135101. doi:10.1063/1.4754132
Wang J, Cieplak P, Kollman P (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem 21(12):1049–1074. doi:10.1002/1096-987x(200009)21:12%3C1049::aid-jcc3%3E3.0.co;2-f
Wang J, Gao H (2005) A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement. J Chem Phys 123(8):084906. doi:10.1063/1.2008233
Wang L, Hingerty B, Srinivasan A, Olson W, Broyde S (2002) Accurate representation of B-DNA double helical structure with implicit solvent and counterions. Biophys J 83(1):382–406. doi:10.1016/s0006-3495(02)75177-1
Wang Y, Tree DR, Dorfman KD (2011) Simulation of DNA extension in nanochannels. Macromolecules 44(16):6594–6604. doi:10.1021/ma201277e
Yang L, Pettitt B (1996) B to A transition of DNA on the nanosecond time scale. J Phys Chem 100 (7):2564–2566. doi:10.1021/jp953080f
Yin Y, Sieradzan AK, Liwo A, He Y, Scheraga HA (2015) Physics-based potentials for coarse-grained modeling of protein–DNA interactions. J Chem Theory Comput 11(4):1792–1808. doi:10.1021/ct5009558
Yoo J, Aksimentiev A (2012) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3(1):45–50. doi:10.1021/jz201501a
Zacharias M (2003) Protein–protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci 12(6):1271–1282. doi:10.1110/ps.0239303
Acknowledgments
We thank Prof. Alexey Onufriev who obtained an all-atom trajectory of B-DNA in water for us; Prof. Modesto Orozco and Dr. Agnes Noy who kindly granted us the trajectory of A-DNA [62]; and U. Deva Priyakumar who sent us .pdb files of DNA molecule with an opening base [71]. For MD simulations, we used (properly modified) program written by Dr. A.V. Savin [74, 75].
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by the Russian Science Foundation (award 16-13-10302). The simulations were carried out at the Joint Supercomputer Center of Russian Academy of Sciences.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kovaleva, N.A., Koroleva (Kikot), I.P., Mazo, M.A. et al. The “sugar” coarse-grained DNA model. J Mol Model 23, 66 (2017). https://doi.org/10.1007/s00894-017-3209-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-017-3209-z