Docking and molecular dynamics studies on triclosan derivatives binding to FabI

  • Xuyun Yang
  • Junrui Lu
  • Ming Ying
  • Jiangbei Mu
  • Peichun Li
  • Yue Liu
Original Paper
  • 371 Downloads

Abstract

FabI, enoyl-ACP reductase (ENR), is the rate-limiting enzyme in the last step for fatty acids biosynthesis in many bacteria. Triclosan (TCL) is a commercial bactericide, and as a FabI inhibitor, it can depress the substrate (trans-2-enoyl-ACP) binding with FabI to hinder the fatty acid synthesis. The structure-activity relationship between TCL derivatives and FabI protein has already been acknowledged, however, their combination at the molecular level has never been investigated. This paper uses the computer-aided approaches, such as molecular docking, molecular dynamics simulation, and binding free energy calculation based on the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method to illustrate the interaction rules of TCL derivatives with FabI and guide the development of new derivatives. The consistent data of the experiment and corresponding activity demonstrates that electron-withdrawing groups on side chain are better than electron-donating groups. 2-Hydroxyl group on A ring, promoting the formation of hydrogen bond, is vital for bactericidal effect; and the substituents at 4-position of A ring, 2′-position and 4′-position of B ring benefit antibacterial activity due to forming a hydrogen bond or stabilizing the conformation of active pocket residues of receptor. While the substituents at 3′-position and 5′-position of B ring destroy the π-π stacking interaction of A ring and NAD+ which depresses the antibacterial activity. This study provides a new sight for designing novel TCL derivatives with superior antibacterial activity.

Keywords

Enoyl-ACP reductase MM-PBSA Molecular dynamics simulation Triclosan 

References

  1. 1.
    Schäberle TF, Hack IM (2014) Overcoming the current deadlock in antibiotic research. Trends Microbiol 22:165–167CrossRefGoogle Scholar
  2. 2.
    Payne DJ, Warren PV, Holmes DJ, Ji Y, Lonsdale JT (2001) Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery. Drug Discov Today 6:537–544CrossRefGoogle Scholar
  3. 3.
    Zhang Y-M, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281:17541–17544CrossRefGoogle Scholar
  4. 4.
    Wright HT, Reynolds KA (2007) Antibacterial targets in fatty acid biosynthesis. Curr Opin Microbiol 10:447–453CrossRefGoogle Scholar
  5. 5.
    Campbell JW, Cronan JE Jr (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332CrossRefGoogle Scholar
  6. 6.
    Chirala SS, Huang W-Y, Jayakumar A, Sakai K, Wakil SJ (1997) Animal fatty acid synthase: functional mapping and cloning and expression of the domain I constituent activities. Proc Natl Acad Sci 94:5588–5593CrossRefGoogle Scholar
  7. 7.
    Tsay J-T, Oh W, Larson T, Jackowski S, Rock C (1992) Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem 267:6807–6814Google Scholar
  8. 8.
    Clough R, Matthis A, Barnum S, Jaworski J (1992) Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis. J Biol Chem 267:20992–20998Google Scholar
  9. 9.
    Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci 95:12352–12357CrossRefGoogle Scholar
  10. 10.
    Gerusz V (2010) Recent advances in the inhibition of bacterial fatty acid biosynthesis. Annu Rep Med Chem 45:295–311CrossRefGoogle Scholar
  11. 11.
    Heath RJ, Rock CO (1995) Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem 270:26538–26542CrossRefGoogle Scholar
  12. 12.
    Heath RJ, Rock CO (2000) Microbiology: a triclosan-resistant bacterial enzyme. Nature 406:145–146CrossRefGoogle Scholar
  13. 13.
    Miyakawa S, SUZUKI K, NOTO T, HARADA Y, OKAZAKI H (1982) Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J Antibiot 35:411–419CrossRefGoogle Scholar
  14. 14.
    Baldock C, Rafferty JB, Sedelnikova SE, Baker PJ, Stuitje AR, Slabas AR, Hawkes TR, Rice DW (1996) A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274:2107–2110CrossRefGoogle Scholar
  15. 15.
    Rosner JL (1993) Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother 37:2251–2253CrossRefGoogle Scholar
  16. 16.
    Winder FG (1982) Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the mycobacteria. Biol Mycobacteria 1:353–438Google Scholar
  17. 17.
    McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 39:4531–532Google Scholar
  18. 18.
    Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114CrossRefGoogle Scholar
  19. 19.
    Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398:383–384CrossRefGoogle Scholar
  20. 20.
    Qiu X, Janson CA, Smyth MG, Payne DJ, Abdel-Meguid SS (1999) Molecular basis for triclosan activity involves a flipping loop in the active site. Protein Sci 8:2529–2532CrossRefGoogle Scholar
  21. 21.
    Ward WH, Holdgate GA, Rowsell S, McLean EG, Pauptit RA, Clayton E, Nichols WW, Colls JG, Minshull CA, Jude DA (1999) Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry 38:12514–12525CrossRefGoogle Scholar
  22. 22.
    Kumar KR, Rohini P, Md AR, Devi YP (2015) A reviw on occurrence, fate and toxicity of triclosan. World J Pharm Pharm Sci 4:336–369Google Scholar
  23. 23.
    Nie Z, Perretta C, Lu J, Su Y, Margosiak S, Gajiwala KS, Cortez J, Nikulin V, Yager KM, Appelt K (2005) Structure-based design, synthesis, and study of potent inhibitors of β-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J Med Chem 48:1596–1609CrossRefGoogle Scholar
  24. 24.
    Gerusz V, Denis A, Faivre F, Bonvin Y, Oxoby M, Briet S, LeFralliec Gr, Oliveira C, Desroy N, Raymond Cd (2012) From triclosan toward the clinic: discovery of nonbiocidal, potent FabI inhibitors for the treatment of resistant bacteria. J Med Chem 55:9914–9928CrossRefGoogle Scholar
  25. 25.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  26. 26.
    Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615Google Scholar
  27. 27.
    Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552Google Scholar
  28. 28.
    Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586CrossRefGoogle Scholar
  29. 29.
    Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641CrossRefGoogle Scholar
  30. 30.
    Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5CrossRefGoogle Scholar
  31. 31.
    Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins: Struct, Funct, Bioinf 46:34–40CrossRefGoogle Scholar
  32. 32.
    Morris GM, Huey R, Olson AJ (2008) Using autodock for ligand‐receptor docking. Curr Protoc Bioinformatics: 24:8.14.1-8.14. 40Google Scholar
  33. 33.
    Park H, Lee J, Lee S (2006) Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins: Struct, Funct, Bioinf 65:549–554CrossRefGoogle Scholar
  34. 34.
    Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery 5:597–607CrossRefGoogle Scholar
  35. 35.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  36. 36.
    Fuhrmann J, Rurainski A, Lenhof HP, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand‐receptor docking. J Comput Chem 31:1911–1918Google Scholar
  37. 37.
    Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xuyun Yang
    • 1
  • Junrui Lu
    • 1
  • Ming Ying
    • 1
  • Jiangbei Mu
    • 1
  • Peichun Li
    • 1
  • Yue Liu
    • 1
  1. 1.Tianjin University of TechnologyTianJinChina

Personalised recommendations