Skip to main content
Log in

Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic and optical properties of six iridium imidazolylidene complexes (1a, 1b, 2, 2b, 3, 3b) that are strong candidates for use in OLED systems were investigated theoretically. Computations using DFT and TD-DFT methods were performed to explain the observed optical properties of these complexes. Observed absorption bands were assigned and the lowest triplet excited states were computed. Whereas complexes 1a and 1b are nonemissive in solution, the simulated phosphorescence spectra of complexes 2, 2b, 3, and 3b were in good agreement with the observed spectra when the vibrational contributions to the electronic transitions were taken into account. The use of vibronic coupling allowed us to reproduce and explain the structured phosphorescence spectra of complexes 2 and 2b, as well as the absence of such structure from the spectra of complexes 3 and 3b.

Successful simulation of the phosphorescence spectra of Ir(III)-based OLED xsystems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595. doi:10.1002/adma.200400684

    Article  Google Scholar 

  2. Sun Y, Forrest SR (2007) High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl Phys Lett 91:263503. doi:10.1063/1.2827178

    Article  Google Scholar 

  3. Chen C-Y, Pootrakulchote N, Chen M-Y et al (2012) A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells. Adv Energy Mater 2:1503–1509. doi:10.1002/aenm.201200285

    Article  CAS  Google Scholar 

  4. Schulze M, Steffen A, Würthner F (2015) Near-IR phosphorescent ruthenium(II) and iridium(III) perylene bisimide metal complexes. Angew Chem Int Ed 54:1570–1573. doi:10.1002/anie.201410437

    Article  CAS  Google Scholar 

  5. De Angelis F, Belpassi L, Fantacci S (2009) Spectroscopic properties of cyclometallated iridium complexes by TDDFT. J Mol Struct THEOCHEM 914:74–86. doi:10.1016/j.theochem.2009.07.025

    Article  Google Scholar 

  6. Dragonetti C, Colombo A, Marinotto D et al (2014) Functionalized styryl iridium(III) complexes as active second-order NLO chromophores and building blocks for SHG polymeric films. J Organomet Chem 751:568–572. doi:10.1016/j.jorganchem.2013.09.003

  7. Broeckx LEE, Delaunay W, Latouche C et al (2013) C–H activation of 2,4,6-triphenylphosphinine: synthesis and characterization of the first homoleptic phosphinine-iridium(III) complex fac-[Ir(C^P)3]. Inorg Chem 52:10738–10740. doi:10.1021/ic401933m

  8. Sun H, Liu S, Lin W et al (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601. doi:10.1038/ncomms4601

    Google Scholar 

  9. Vazart F, Latouche C (2015) Validation of a computational protocol to simulate near IR phosphorescence spectra for Ru(II) and Ir(III) metal complexes. Theor Chem Accounts 134:1–7. doi:10.1007/s00214-015-1737-0

    Article  CAS  Google Scholar 

  10. Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289. doi:10.1021/acs.jctc.5b00257

    Article  CAS  Google Scholar 

  11. Heinze K, Hempel K, Tschierlei S et al (2009) Resonance Raman studies of bis(terpyridine)ruthenium(II) amino acid esters and diesters. Eur J Inorg Chem 2009:3119–3126. doi:10.1002/ejic.200900309

  12. Bhuiyan AA, Kincaid JR (1998) Synthesis and photophysical properties of zeolite-entrapped bisterpyridine ruthenium(II). Dramatic consequences of ligand-field-state destabilization. Inorg Chem 37:2525–2530. doi:10.1021/ic970950u

  13. Muhavini Wawire C, Jouvenot D, Loiseau F et al (2013) Density-functional study of luminescence in polypyridine ruthenium complexes. J Photochem Photobiol A Chem 276:8–15. doi:10.1016/j.jphotochem.2013.10.018

    Article  CAS  Google Scholar 

  14. Bergeron BV, Meyer GJ (2002) Reductive electron transfer quenching of MLCT excited states bound to nanostructured metal oxide thin films. J Phys Chem B 107:245–254. doi:10.1021/jp026823n

    Article  Google Scholar 

  15. Johansson PG, Kopecky A, Galoppini E, Meyer GJ (2013) Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged RuII–isothiocyanate compounds. J Am Chem Soc 135:8331–8341. doi:10.1021/ja402193f

  16. Lundqvist MJ, Galoppini E, Meyer GJ, Persson P (2007) Calculated optoelectronic properties of ruthenium tris-bipyridine dyes containing oligophenyleneethynylene rigid rod linkers in different chemical environments. J Phys Chem A 111:1487–1497. doi:10.1021/jp064219x

    Article  CAS  Google Scholar 

  17. Schoonover JR, Bates WD, Meyer TJ (1995) Application of resonance Raman spectroscopy to electronic structure in metal complex excited states. Excited-state ordering and electron delocalization in dipyrido[3,2-a:2′,3′-c]phenazine (dppz): complexes of Re(I) and Ru(II). Inorg Chem 34:6421–6422. doi:10.1021/ic00130a004

  18. Latouche C, Baiardi A, Barone V (2014) Virtual eyes designed for quantitative spectroscopy of inorganic complexes: vibronic signatures in the phosphorescence spectra of terpyridine derivatives. J Phys Chem B 119:7253–7257. doi:10.1021/jp510589u

    Article  Google Scholar 

  19. Barone V, Biczysko M, Bloino J (2014) Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation. Phys Chem Chem Phys 16:1759–1787. doi:10.1039/C3CP53413H

    Article  CAS  Google Scholar 

  20. Biczysko M, Panek P, Scalmani G et al (2010) Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method. J Chem Theory Comput 6:2115–2125. doi:10.1021/ct100212p

    Article  CAS  Google Scholar 

  21. Baiardi A, Bloino J, Barone V (2015) Accurate simulation of resonance-Raman spectra of flexible molecules: an internal coordinates approach. J Chem Theory Comput 11:3267–3280. doi:10.1021/acs.jctc.5b00241

  22. Vazart F, Latouche C, Bloino J, Barone V (2015) Vibronic coupling investigation to compute phosphorescence spectra of Pt(II) complexes. Inorg Chem 54:5588–5595. doi:10.1021/acs.inorgchem.5b00734

    Article  CAS  Google Scholar 

  23. Latouche C, Palazzetti F, Skouteris D, Barone V (2014) High-accuracy vibrational computations for transition metal complexes including anharmonic corrections: ferrocene, ruthenocene and osmocene as test cases. J Chem Theory Comput 10:4565–4573. doi:10.1021/ct5006246

    Article  CAS  Google Scholar 

  24. Green K, Gauthier N, Sahnoune H et al (2013) Covalent immobilization of redox-active Fe(κ2-dppe)(η5-C5Me5)-based π-conjugated wires on oxide-free hydrogen-terminated silicon surfaces. Organometallics 32:5333–5342. doi:10.1021/om4006017

  25. Sahnoune H, Baranová Z, Bhuvanesh N et al (2013) A metal-capped conjugated polyyne threaded through a phenanthroline-based macrocycle. Probing beyond the mechanical bond to interactions in interlocked molecular architectures. Organometallics 32:6360–6367. doi:10.1021/om400709q

    Article  CAS  Google Scholar 

  26. Makhoul R, Sahnoune H, Davin T et al (2014) Proton-controlled regioselective synthesis of [Cp*(dppe)Fe–C≡C-1-(η6-C10H7)Ru(η5-Cp](PF6) and electron-driven haptotropic rearrangement of the (η5-Cp)Ru+ arenophile. Organometallics 33:4792–4802. doi:10.1021/om500047k

  27. Green K, Gauthier N, Sahnoune H et al (2013) Synthesis and characterization of redox-active mononuclear Fe(κ2-dppe)(η5-C5Me5)-terminated π-conjugated wires. Organometallics 32:4366–4381. doi:10.1021/om400515g

  28. Latouche C, Liu CW, Saillard J-Y (2014) Encapsulating hydrides and main-group anions in d 10-metal clusters stabilized by 1,1-dichalcogeno ligands. J Clust Sci 25:147–171. doi:10.1007/s10876-013-0671-3

  29. Liao J-H, Latouche C, Li B et al (2014) A twelve-coordinated iodide in a cuboctahedral silver(I) skeleton. Inorg Chem 53:2260–2267. doi:10.1021/ic402960e

    Article  CAS  Google Scholar 

  30. Latouche C, Lin Y-R, Tobon Y et al (2014) Au–Au chemical bonding induced by UV irradiation of dinuclear gold(I) complexes: a computational study with experimental evidence. Phys Chem Chem Phys 16:25840–25845. doi:10.1039/C4CP03990D

  31. Boixel J, Guerchais V, Le Bozec H et al (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136:5367–5375. doi:10.1021/ja4131615

    Article  CAS  Google Scholar 

  32. Jacquemin D, Perpète EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135. doi:10.1021/ct700187z

    Article  CAS  Google Scholar 

  33. Steffen A, Costuas K, Boucekkine A et al (2014) Fluorescence in rhoda- and iridacyclopentadienes neglecting the spin–orbit coupling of the heavy atom: the ligand dominates. Inorg Chem 53:7055–7069. doi:10.1021/ic501115k

    Article  CAS  Google Scholar 

  34. Jacquemin D, Perpète EA, Scuseria GE et al (2008) Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem Phys Lett 465:226–229. doi:10.1016/j.cplett.2008.09.071

    Article  CAS  Google Scholar 

  35. Jacquemin D, Preat J, Wathelet V et al (2006) Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc 128:2072–2083. doi:10.1021/ja056676h

    Article  CAS  Google Scholar 

  36. Latouche C, Barone V (2014) Computational chemistry meets experiments for explaining the behavior of bibenzyl: a thermochemical and spectroscopic (infrared, Raman, and NMR) investigation. J Chem Theory Comput 10:5586–5592. doi:10.1021/ct500930b

  37. Latouche C, Kahlal S, Furet E et al (2013) Shape modulation of octanuclear Cu(I) or Ag(I) dichalcogeno template clusters with respect to the nature of their encapsulated anions: a combined theoretical and experimental investigation. Inorg Chem 52:7752–7765. doi:10.1021/ic400959a

  38. Latouche C, Kahlal S, Lin Y-R et al (2013) Anion encapsulation and geometric changes in hepta- and hexanuclear copper(I) dichalcogeno clusters: a theoretical and experimental investigation. Inorg Chem 52:13253–13262. doi:10.1021/ic402207u

  39. Latouche C, Lanoe P-H, Williams JAG et al (2011) Switching of excited states in cyclometalated platinum complexes incorporating pyridyl-acetylide ligands (Pt–C≡C–py): a combined experimental and theoretical study. New J Chem 35:2196–2202. doi:10.1039/C1NJ20225A

  40. Barone V, Latouche C, Skouteris D et al (2015) Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations. Mon Not R Astron Soc Lett 453:L31–L35. doi:10.1093/mnrasl/slv094

    Google Scholar 

  41. Vlček A, Záliš S (2007) Modeling of charge-transfer transitions and excited states in d 6 transition metal complexes by DFT techniques. Coord Chem Rev 251:258–287. doi:10.1016/j.ccr.2006.05.021

  42. Barone V, Baiardi A, Biczysko M et al (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422. doi:10.1039/C2CP41006K

    Article  CAS  Google Scholar 

  43. Licari D, Baiardi A, Biczysko M et al (2015) Implementation of a graphical user interface for the virtual multifrequency spectrometer: the VMS-Draw tool. J Comput Chem 36:321–334. doi:10.1002/jcc.23785

  44. Barone V (2016) The virtual multifrequency spectrometer: a new paradigm for spectroscopy. Wiley Interdiscip Rev Comput Mol Sci 6:86–110. doi:10.1002/wcms.1238

  45. Bloino J, Barone V (2012) A second-order perturbation theory route to vibrational averages and transition properties of molecules: general formulation and application to infrared and vibrational circular dichroism spectroscopies. J Chem Phys 136:124108. doi:10.1063/1.3695210

    Article  Google Scholar 

  46. Barone V (2012) Computational strategies for spectroscopy. Wiley, Hoboken

  47. Barone V, Biczysko M, Bloino J et al (2012) Toward anharmonic computations of vibrational spectra for large molecular systems. Int J Quantum Chem 112:2185–2200. doi:10.1002/qua.23224

    Article  CAS  Google Scholar 

  48. Piccardo M, Bloino J, Barone V (2015) Generalized vibrational perturbation theory for rotovibrational energies of linear, symmetric and asymmetric tops: theory, approximations, and automated approaches to deal with medium-to-large molecular systems. Int J Quantum Chem 115:948–982. doi:10.1002/qua.24931

    Article  CAS  Google Scholar 

  49. Egidi F, Bloino J, Barone V, Cappelli C (2012) Toward an accurate modeling of optical rotation for solvated systems: anharmonic vibrational contributions coupled to the polarizable continuum model. J Chem Theory Comput 8:585–597. doi:10.1021/ct2008473

    Article  CAS  Google Scholar 

  50. Baiardi A, Bloino J, Barone V (2013) General time dependent approach to vibronic spectroscopy including Franck–Condon, Herzberg–Teller, and Duschinsky effects. J Chem Theory Comput 9:4097–4115. doi:10.1021/ct400450k

    Article  CAS  Google Scholar 

  51. Muniz-Miranda F, Pedone A, Battistelli G et al (2015) Benchmarking TD-DFT against vibrationally resolved absorption spectra at room temperature: 7-aminocoumarins as test cases. J Chem Theory Comput 11:5371–5384. doi:10.1021/acs.jctc.5b00750

  52. Puzzarini C, Biczysko M, Barone V (2010) Accurate harmonic/anharmonic vibrational frequencies for open-shell systems: performances of the B3LYP/N07D model for semirigid free radicals benchmarked by CCSD(T) computations. J Chem Theory Comput 6:828–838. doi:10.1021/ct900594h

    Article  CAS  Google Scholar 

  53. Barone V, Biczysko M, Bloino J, Puzzarini C (2013) Glycine conformers: a never-ending story? Phys Chem Chem Phys 15:1358–1363. doi:10.1039/C2CP43884D

    Article  CAS  Google Scholar 

  54. Bloino J, Biczysko M, Santoro F, Barone V (2010) General approach to compute vibrationally resolved one-photon electronic spectra. J Chem Theory Comput 6:1256–1274. doi:10.1021/ct9006772

    Article  CAS  Google Scholar 

  55. Barone V, Bloino J, Guido CA, Lipparini F (2010) A fully automated implementation of VPT2 infrared intensities. Chem Phys Lett 496:157–161. doi:10.1016/j.cplett.2010.07.012

  56. Biczysko M, Panek P, Scalmani G et al (2010) Harmonic and anharmonic vibrational frequency calculations with the double-hybrid B2PLYP method: analytic second derivatives and benchmark studies. J Chem Theory Comput 6:2115–2125. doi:10.1021/ct100212p

    Article  CAS  Google Scholar 

  57. Banerjee S, Baiardi A, Bloino J, Barone V (2016) Vibronic effects on rates of excitation energy transfer and their temperature dependence. J Chem Theory Comput 12:2357–2365. doi:10.1021/acs.jctc.6b00157

    Article  CAS  Google Scholar 

  58. Hodecker M, Biczysko M, Dreuw A, Barone V (2016) Simulation of vacuum UV absorption and electronic circular dichroism spectra of methyl oxirane: the role of vibrational effects. J Chem Theory Comput 12:2820–2833. doi:10.1021/acs.jctc.6b00121

    Article  CAS  Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian09, revision D.01. Gaussian, Inc., Wallingford

  60. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

  61. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  Google Scholar 

  62. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. doi:10.1103/PhysRevB.54.16533

    Article  CAS  Google Scholar 

  63. Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer H III (ed) Methods of electronic structure theory. Springer, New York, pp 1–27

  64. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299. doi:10.1063/1.448975

  65. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. doi:10.1063/1.448799

  66. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284. doi:10.1063/1.448800

  67. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43. doi:10.1063/1.1480445

    Article  CAS  Google Scholar 

  68. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210

  69. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104. doi:10.1063/1.3382344

  70. Barone V, Bloino J, Biczysko M, Santoro F (2009) Fully integrated approach to compute vibrationally resolved optical spectra: from small molecules to macrosystems. J Chem Theory Comput 5:540–554. doi:10.1021/ct8004744

    Article  CAS  Google Scholar 

  71. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

  72. Gorelsky SI (2009) AOMix: program for molecular orbital analysis. http://www.sg-chem.net/

  73. Gorelsky SI (2009) SWizard program. http://www.sg-chem.net

Download references

Acknowledgments

Prof. Yun Chi (National Tsing Hua University, Taiwan), who communicated his experimental results prior to publication, and Prof. Vincenzo Barone (SNS Pisa, Italy), who made available the VMS package developed in his laboratory, are gratefully acknowledged. We also acknowledge the HPC resources of CINES and of IDRIS made available under the allocations 2015-[x2015080649] and 2016-[x2016080649] by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Camille Latouche or Abdou Boucekkine.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

This supplementary material includes ground-state optimized geometries of all complexes; orbital diagrams of complexes 1b, 2, 2b, 3, and 3b; simulated electronic absorption spectra of complexes 1b, 2b, and 3b; shift vectors/normal modes of complexes 2 and 3; and energies and 5d metal orbital weights of the frontier MOs of complexes 1a, 1b–3a, and 3b.

ESM 1

(DOCX 6033 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaidi, H., Belaidi, S., Katan, C. et al. Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data. J Mol Model 22, 265 (2016). https://doi.org/10.1007/s00894-016-3132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3132-8

Keywords

Navigation