Theoretical investigation of loratadine reactivity in order to understand its degradation properties: DFT and MD study

  • Stevan Armaković
  • Sanja J. Armaković
  • Biljana F. Abramović
Original Paper

Abstract

Antihistamines are frequently used pharmaceuticals that treat the symptoms of allergic reactions. Loratadine (LOR) is an active component of the second generation of selective antihistaminic pharmaceutical usually known as Claritin. Frequent usage of this type of pharmaceuticals imposes the need for understanding their fundamental reactive properties. In this study we have theoretically investigated reactive properties of LOR using both density functional theory (DFT) calculations and molecular dynamics (MD) simulations. DFT study is used for collecting information related to the molecule stability, structure, frontier molecular orbitals, quantum molecular descriptors, charge distribution, molecular electrostatic potential surfaces, charge polarization, and local reactivity properties according to average local ionization energy surfaces. Based on these results, N24 atom of pyridine ring and oxygen atom O1 were identified with nucleophilic nature. In order to collect the information necessary for the proposition of degradation compounds we also calculated bond dissociation energies (BDE) for hydrogen abstraction and single acyclic bonds as well. According to BDE, the oxidation is likely to occur in the piperidine and cycloheptane rings. MD simulations were used in order to understand the interactions with water through radial distribution functions (RDF). Based on RDFs the most important interactions with solvent are determined for carbon atom C5, chlorine atom Cl15, and oxygen atom O1. Collected results based on DFT calculations and MD simulations provided information important for suggestion of possible degradation compounds. Covalent and noncovalent interactions between LOR and OH have also been investigated.

Keywords

Bond dissociation energy (BDE) Degradation intermediates Density functional theory (DFT) Loratadine (LOR) Molecular dynamics (MD) Radial distribution functions (RDF) 

Supplementary material

894_2016_3101_MOESM1_ESM.doc (1.4 mb)
ESM 1(DOC 1419 kb)

References

  1. 1.
    Pastrana-Martínez LM, Morales-Torres S, Figueiredo JL, Faria JL, Silva AM (2015) Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res 77:179–190CrossRefGoogle Scholar
  2. 2.
    Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123CrossRefGoogle Scholar
  3. 3.
    Tewari S, Jindal R, Kho Y, Eo S, Choi K (2013) Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere 91:697–704CrossRefGoogle Scholar
  4. 4.
    Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201CrossRefGoogle Scholar
  5. 5.
    Petrie B, McAdam EJ, Scrimshaw MD, Lester JN, Cartmell E (2013) Fate of drugs during wastewater treatment. TrAC Trends Anal Chem 49:145–159CrossRefGoogle Scholar
  6. 6.
    Teijon G, Candela L, Tamoh K, Molina-Díaz A, Fernández-Alba A (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595CrossRefGoogle Scholar
  7. 7.
    Al-Odaini NA, Zakaria MP, Zali MA, Juahir H, Yaziz MI, Surif S (2012) Application of chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water. Environ Monit Assess 184:6735–6748CrossRefGoogle Scholar
  8. 8.
    Luque-Espinar JA, Navas N, Chica-Olmo M, Cantarero-Malagón S, Chica-Rivas L (2015) Seasonal occurrence and distribution of a group of ECs in the water resources of Granada city metropolitan areas (South of Spain): pollution of raw drinking water. J Hydrol 531:612–625Google Scholar
  9. 9.
    Ji K, Han EJ, Back S, Park J, Ryu J, Choi K (2015) Prioritizing human pharmaceuticals for ecological risks in freshwater environment of Korea. Environ Toxicol Chem 9999:1–9Google Scholar
  10. 10.
    Rodríguez-Gil JL, Catalá M, Alonso SG, Maroto RR, Valcárcel Y, Segura Y, Molina R, Melero JA, Martínez F (2010) Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 80:381–388CrossRefGoogle Scholar
  11. 11.
    Andersson T, Broo A, Evertsson E (2014) Prediction of drug candidates’ sensitivity toward autoxidation: computational estimation of CH dissociation energies of carbon‐centered radicals. J Pharm Sci 103:1949–1955CrossRefGoogle Scholar
  12. 12.
    Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263CrossRefGoogle Scholar
  13. 13.
    Lienard P, Gavartin J, Boccardi G, Meunier M (2015) Predicting drug substances autoxidation. Pharm Res 32:300–310CrossRefGoogle Scholar
  14. 14.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  15. 15.
    Luo Y-R (2002) Handbook of bond dissociation energies in organic compounds. CRC, Boca RatonGoogle Scholar
  16. 16.
    Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142CrossRefGoogle Scholar
  17. 17.
    Schrödinger, LLC (2015) Jaguar, version 8.8. Schrödinger, LLC, New YorkGoogle Scholar
  18. 18.
    Schrödinger, LLC (2015) Schrödinger Release 2015–2: MacroModel, version 10.8. Schrödinger, LLC, New YorkGoogle Scholar
  19. 19.
    Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519CrossRefGoogle Scholar
  20. 20.
    Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α‐helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75:348–359CrossRefGoogle Scholar
  21. 21.
    Bowers KJ et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. in SC 2006 Conference, Proceedings of the ACM/IEEE. IEEEGoogle Scholar
  22. 22.
    Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752–1780CrossRefGoogle Scholar
  23. 23.
    Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  24. 24.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695CrossRefGoogle Scholar
  25. 25.
    Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189CrossRefGoogle Scholar
  26. 26.
    Berendsen HJ, Postma JP, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Intermolecular forces. Springer, HeidelbergGoogle Scholar
  27. 27.
    Cao Y, Beachy MD, Braden DA, Morrill L, Ringnalda MN, Friesner RA (2005) Nuclear-magnetic-resonance shielding constants calculated by pseudospectral methods. J Chem Phys 122:224116CrossRefGoogle Scholar
  28. 28.
    Jain R, Bally T, Rablen PR (2009) Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J Org Chem 74:4017–4023CrossRefGoogle Scholar
  29. 29.
    Giesen DJ, Zumbulyadis N (2002) A hybrid quantum mechanical and empirical model for the prediction of isotropic 13C shielding constants of organic molecules. PCCP 4:5498–5507Google Scholar
  30. 30.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506Google Scholar
  31. 31.
    Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113CrossRefGoogle Scholar
  32. 32.
    Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430CrossRefGoogle Scholar
  33. 33.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  34. 34.
    Chandrakumar K, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666CrossRefGoogle Scholar
  35. 35.
    Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Annu Rep Prog Chem, Sect C 105:13–39CrossRefGoogle Scholar
  36. 36.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  37. 37.
    Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  38. 38.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  39. 39.
    Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107:PR46–PR74CrossRefGoogle Scholar
  40. 40.
    Taherpour AA, Mozafai A, Ranjbar S, Taban S (2015) A study of the effects of solvent on structural and conformational properties of ranitidine tautomer forms by DFT method. Struct Chem 26:517–529CrossRefGoogle Scholar
  41. 41.
    Petrovic M, Gros M, Barcelo D (2006) Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry. J Chromatogr 1124:68–81CrossRefGoogle Scholar
  42. 42.
    Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2008) Simultaneous determination of macrolides, sulfonamides, and other pharmaceuticals in water samples by solid‐phase extraction and LC‐(ESI) MS. J Sep Sci 31:2182–2188CrossRefGoogle Scholar
  43. 43.
    Prasad O, Sinha L, Kumar N (2010) Theoretical Raman and IR spectra of tegafur and comparison of molecular electrostatic potential surfaces, polarizability and hyerpolarizability of tegafur with 5-fluoro-uracil by density functional theory. J At Mol Sci 1:201–214Google Scholar
  44. 44.
    Sagdinc SG, Erdas D, Gunduz I, Sahinturk AE (2015) FT-IR and FT-Raman spectra, molecular structure and first-order molecular hyperpolarizabilities of a potential antihistaminic drug, cyproheptadine HCl. Spectrochim Acta A 134:350–360CrossRefGoogle Scholar
  45. 45.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) Active components of frequently used β-blockers from the aspect of computational study. J Mol Model 18:4491–4501CrossRefGoogle Scholar
  46. 46.
    Rosline Sebastian Sr SH, Attia MI, Almutairi MS, El-Emam AA, Panicker CY, Van Alsenoy C (2014) FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione, a potential bioactive agent. Spectrochim Acta A 132:295–304CrossRefGoogle Scholar
  47. 47.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2013) Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study. Chem Phys Lett 578:156–161CrossRefGoogle Scholar
  48. 48.
    Armaković SJ, Armaković S, Finčur NL, Šibul F, Vione D, Šetrajčić JP, Abramović B (2015) Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study. RSC Adv 5:54589–54604CrossRefGoogle Scholar
  49. 49.
    Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Average local ionization energies computed on the surfaces of some strained molecules. Int J Quantum Chem 38:645–653CrossRefGoogle Scholar
  50. 50.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  51. 51.
    Chandrakumar K, Pal S (2002) The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: A semi-quantitative study. Int J Mol Sci 3:324–337CrossRefGoogle Scholar
  52. 52.
    Li M (2012) Organic chemistry of drug degradation. Royal Society of ChemistryGoogle Scholar
  53. 53.
    Baertschi SW, Alsante KM, Reed RA (2011) Pharmaceutical stress testing: predicting drug degradation. CRC, Boca Raton Google Scholar
  54. 54.
    Klick S, Muijselaar PG, Waterval J, Eichinger T, Korn C, Gerding TK, Debets AJ, Sänger-van de Griend C, van den Beld C, Somsen GW (2005) Stress testing of drug substances and drug products. Pharm Technol 29:48–66Google Scholar
  55. 55.
    Alsante KM, Martin L, Baertschi SW (2003) A stress testing benchmarking study. Pharm Technol 27:60–73Google Scholar
  56. 56.
    Vaz RV, Gomes JR, Silva CM (2016) Journal of hydrology molecular dynamics simulation of diffusion coefficients and structural properties of ketones in supercritical CO2 at infinite dilution. J Supercrit Fluids 107:630–638CrossRefGoogle Scholar
  57. 57.
    El Ragehy N, Badawey A, Khateeb S-E (2002) Stability indicating methods for the determination of loratadine in the presence of its degradation product. J Pharm Biomed Anal 28:1041–1053CrossRefGoogle Scholar
  58. 58.
    Gibbons J, Sardella D, Duncan D, Pike R (2007) Degradation product of loratadine. J Pharm Biomed Anal 43:1191–1192CrossRefGoogle Scholar
  59. 59.
    Grigoriu I-C, Cioroiu B-I, Strugaru A-M, Agoroaei L, Dehelean C, Stoian D, Butnaru E (2015) Preliminary impurity profile study of desloratadine used in toxicological studies. Rev Chim 66:1064–1067Google Scholar
  60. 60.
    Abramović B, Šojić D, Despotović V, Vione D, Pazzi M, Csanádi J (2011) A comparative study of the activity of TiO2 Wackherr and Degussa P25 in the photocatalytic degradation of picloram. Appl Catal B Environ 105:191–198CrossRefGoogle Scholar
  61. 61.
    Hernández M, Morgante V, Flores C, Villalobos P, González M, Miralles P, Dinamarca A, Seeger M (2008) Modern approaches for the study of s-triazine herbicide bioremediation in agricultural soils. J Soil Sci Plant Nutr 8:19–30Google Scholar
  62. 62.
    Marco-Urrea E, Pérez-Trujillo M, Cruz-Morató C, Caminal G, Vicent T (2010) Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J Hazard Mater 176:836–842CrossRefGoogle Scholar
  63. 63.
    Wishart DS et al (2007) HMDB: the Human Metabolome Database. http://www.hmdb.ca/spectra/nmr_two_d/1950. Accessed 08.01.2016
  64. 64.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E (2012) HMDB 3.0—the human metabolome database in 2013. Nucl Acids Res:gks1065Google Scholar
  65. 65.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610CrossRefGoogle Scholar
  66. 66.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526CrossRefGoogle Scholar
  67. 67.
    Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448Google Scholar
  68. 68.
    Xiang Y, Fang J, Shang C (2016) Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Res 90:301–308Google Scholar
  69. 69.
    Nadim AH, Al-Ghobashy MA, Nebsen M, Shehata MA (2015) Optimization of photocatalytic degradation of meloxicam using titanium dioxide nanoparticles: application to pharmaceutical wastewater analysis, treatment, and cleaning validation. Environ Sci Pollut Res 22:15516–15525CrossRefGoogle Scholar
  70. 70.
    Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287CrossRefGoogle Scholar
  71. 71.
    Šojić D, Despotović V, Orčić D, Szabó E, Arany E, Armaković S, Illés E, Gajda-Schrantz K, Dombi A, Alapi T, Sajben-Nagy E, Palágyi A, Cs V, Manczinger L, Bjelica L, Abramović B (2012) Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity. J Hydrol 472:314–327Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stevan Armaković
    • 1
  • Sanja J. Armaković
    • 2
  • Biljana F. Abramović
    • 2
  1. 1.University of Novi Sad, Faculty of Sciences, Department of PhysicsNovi SadSerbia
  2. 2.University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental ProtectionNovi SadSerbia

Personalised recommendations