Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study


The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N–H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin’s hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor–acceptor complexes.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Leung KK, Shilton BH (2013) J Biol Chem 288:11242–11251

    CAS  Article  Google Scholar 

  2. 2.

    Song N, Gagliardi CJ, Binstead RA, Zhang MT, Thorp H et al (2012) J Am Chem Soc 134:18538–18541

    CAS  Article  Google Scholar 

  3. 3.

    Beheshti A, Norouzi P, Ganjali MR (2012) Int J Electrochem Sci 7:4811–4821

    CAS  Google Scholar 

  4. 4.

    Sollner S, Deller S, Macheroux P, Palfey BA (2009) Biochemistry 48:8636–8643

    CAS  Article  Google Scholar 

  5. 5.

    Colucci MA, Moody CJ, Couch GD (2008) Org Biomol Chem 6:637–656

    CAS  Article  Google Scholar 

  6. 6.

    Frontana C, Vazquez-Mayagoitia A, Garza J, Vargas R, Gonzalez I (2006) J Phys Chem A 110:9411–9419

    CAS  Article  Google Scholar 

  7. 7.

    Celli CM, Tran N, Knox R, Jaiswal AK (2006) Biochem Pharmacol 72:366–376

    CAS  Article  Google Scholar 

  8. 8.

    Cenas N, Anusevicius Z, Nivinskas H, Miseviciene L, Sarlauskas J (2004) Methods Enzymol 382:258–277

    CAS  Article  Google Scholar 

  9. 9.

    Di Francesco AM, Ward TH, Butler J (2004) Methods Enzymol 382:174–193

    Article  Google Scholar 

  10. 10.

    Watanabe N, Dickinson DA, Liu RM, Forman HJ (2004) Methods Enzymol 378:319–340

    CAS  Article  Google Scholar 

  11. 11.

    Faig M, Bianchet MA, Winski S, Hargreaves R, Moody CJ et al (2001) Structure 9:659–667

    CAS  Article  Google Scholar 

  12. 12.

    Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Chem Res Toxicol 13:135–160

    CAS  Article  Google Scholar 

  13. 13.

    Ross D, Siegel D (2004) Methods Enzymol 382:115–144

    CAS  Article  Google Scholar 

  14. 14.

    Cheng J, Sulpizi M, Sprik M (2009) J Chem Phys 131:154504

    Article  Google Scholar 

  15. 15.

    Namazian M, Almodarresieh HA (2004) J Mol Struct (Theochem) 686:97

    CAS  Article  Google Scholar 

  16. 16.

    Shamshipur M, Alizadeh K, Arshadi S (2006) J Mol Struct (Theochem) 758:71

    Article  Google Scholar 

  17. 17.

    Lee I-SH, Ostovic D, Kreevoy MM (1988) J Am Chem Soc 110:3989–3993

    CAS  Article  Google Scholar 

  18. 18.

    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811

  19. 19.

    Kreevoy MM, Lee I-SH (1984) J Am Chem Soc 106:2550–2553

    CAS  Article  Google Scholar 

  20. 20.

    Lee I-SH, Jeoung EH, Kreevoy MM (1997) J Am Chem Soc 119:2722–2728

    CAS  Article  Google Scholar 

  21. 21.

    Bresnahan CG, Reinhardt CR, Bartholow TG, Rumpel JP, North M et al (2015) J Phys Chem A 119:172–182

    CAS  Article  Google Scholar 

  22. 22.

    Mueller RM, North MA, Yang C, Hati S, Bhattacharyya S (2011) J Phys Chem B 115:3632–3641

    CAS  Article  Google Scholar 

  23. 23.

    North MA, Bhattacharyya S, Truhlar DG (2010) J Phys Chem B 114:14907–14915

    CAS  Article  Google Scholar 

  24. 24.

    Rauschnot JCJ, Yang C, Yang V, Bhattacharyya S (2009) J Phys Chem B 113:8149–8157

    CAS  Article  Google Scholar 

  25. 25.

    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569–585

    CAS  Article  Google Scholar 

  26. 26.

    Elstner M, Cui Q, Munih P, Kaxiras E, Frauenheim T et al (2003) J Comput Chem 24:565–581

    CAS  Article  Google Scholar 

  27. 27.

    Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Article  Google Scholar 

  28. 28.

    Sinnokrot MO, Sherrill CD (2006) J Phys Chem A 110:10656–10668

    CAS  Article  Google Scholar 

  29. 29.

    Zhao Y, Truhlar DG (2006) Org Lett 8:5753–5755

    CAS  Article  Google Scholar 

  30. 30.

    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  31. 31.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

    Google Scholar 

  32. 32.

    Cossi M, Barone V (2000) J Chem Phys 112:2427–2435

    CAS  Article  Google Scholar 

  33. 33.

    Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  34. 34.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS et al (1993) J Comput Chem 14:1347–1363

    CAS  Article  Google Scholar 

  35. 35.

    Biondi C, Galeazzi R, Littarru G, Greci L (2002) Free Radic Res 36:399–404

    CAS  Article  Google Scholar 

  36. 36.

    Zhu Z, Gunner MR (2005) Biochemistry 44:82–96

    CAS  Article  Google Scholar 

  37. 37.

    Kelly CP, Cramer CJ, Truhlar DG (2007) J Phys Chem B 111:408–422

    CAS  Article  Google Scholar 

  38. 38.

    Abel B, Buck U, Sobolewski AL, Domcke W (2012) Phys Chem Chem Phys 14:22–34

    CAS  Article  Google Scholar 

  39. 39.

    Lewis A, Bumpus JA, Truhlar DG, Cramer CJ (2004) J Chem Educ 81:596–604

    CAS  Article  Google Scholar 

  40. 40.

    Peng C, Schlegel HB (1993) Israel J Chem 33:449–454

    CAS  Article  Google Scholar 

  41. 41.

    Kreevoy MM, Truhlar DG (1986) Transition state theory. In: Bernasconi CF (ed) Investigation of rates and mechanisms of reactions, 4th edn, vol 6, part 1. Wiley, New York,pp 13–95

  42. 42.

    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  43. 43.

    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    CAS  Article  Google Scholar 

  44. 44.

    Leffler JE (1953) Science 117:340–341

    CAS  Article  Google Scholar 

  45. 45.

    Hammond GS (1955) J Am Chem Soc 77:334–338

    CAS  Article  Google Scholar 

  46. 46.

    Thornton ER (1967) J Am Chem Soc 89:2915–2927

    CAS  Article  Google Scholar 

  47. 47.

    Weinhold F, Landis CR (2001) Chem Educ Res Pract Eur 2001

  48. 48.

    Eyring H (1935) J Chem Phys 3:107–115

    CAS  Article  Google Scholar 

  49. 49.

    Sutcliffe MJ, Masgrau L, Roujeinikova A, Johannissen LO, Hothi P et al (2006) Phil Trans R Soc B Biol Sci 361:1375–1386

    CAS  Article  Google Scholar 

  50. 50.

    Klinman JP, Kohen A (2013) Annu Rev Biochem 82:471–496

    CAS  Article  Google Scholar 

Download references


This work was supported by XSEDE Grant (CHE-110018), Research Corporation grant (CCSA 23223), and the Office of Research and Sponsored Programs, University of Wisconsin Eau Claire. We gratefully acknowledge the computational support from the in-house Blugold Supercomputing Cluster and Learning and Technology Services of the University of Wisconsin Eau Claire. We also thank Dr. Fredrick King of University of Wisconsin Eau Claire for his helpful discussions.

Author information



Corresponding author

Correspondence to Sudeep Bhattacharyya.

Additional information

This work contains results from a Physical Chemistry-I class project assigned to undergraduate students. Clorice R. Reinhardt is the main contributory undergraduate author. Tanner C. Jaglinski, Ashly M. Kastenschmidt, Eun H. Song, Adam K. Gross, Alyssa J. Krause, Jonathan M. Gollmar, Kristin J. Meise, Zachary S. Stenerson, Tyler J. Weibel, Andrew Dison, Mackenzie R. Finnegan, Daniel S. Griesi, Michael D. Heltne, Tom G. Hughes, Connor D. Hunt, Kayla A. Jansen, Adam H. Xiong are students of 2014 Fall Physical Chemistry-1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reinhardt, C.R., Jaglinski, T.C., Kastenschmidt, A.M. et al. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study. J Mol Model 22, 199 (2016).

Download citation


  • Density functional theory
  • Dispersion forces
  • Dispersion corrections
  • Gibbs’ free energy calculations
  • Flavin
  • Flavoenzymes
  • Marcus theory
  • Redox reactions
  • Quantum chemical studies
  • Quinones
  • Reorganization energy
  • π–π stacking interactions