Skip to main content
Log in

Analyzing the substitution effect on the CoMFA results within the framework of density functional theory (DFT)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Though QSAR was originally developed in the context of physical organic chemistry, it has been applied very extensively to chemicals (drugs) which act on biological systems, in this idea one of the most important QSAR methods is the 3D QSAR model. However, due to the complexity of understanding the results it is necessary to postulate new methodologies to highlight their physical-chemical meaning. In this sense, this work postulates new insights to understand the CoMFA results using molecular quantum similarity and chemical reactivity descriptors within the framework of density functional theory. To obtain these insights a simple theoretical scheme involving quantum similarity (overlap, coulomb operators, their euclidean distances) and chemical reactivity descriptors such as chemical potential (μ), hardness (ɳ), softness (S), electrophilicity (ω), and the Fukui functions, was used to understand the substitution effect. In this sense, this methodology can be applied to analyze the biological activity and the stabilization process in the non-covalent interactions on a particular molecular set taking a reference compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morales-Bayuelo A, Matute RA, Caballero J (2015) J Mol Model 21:156

    Article  Google Scholar 

  2. Morales-Bayuelo A, Caballero J (2015) Mol2Net. 2015. 1(Section B):1–13. Proceedings

  3. Bultinck P, Girones X, Carbó-Dorca R (2005) Rev Comput Chem 21:127

    CAS  Google Scholar 

  4. Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2003) J Phys Chem A 107:11120

    Article  CAS  Google Scholar 

  5. Carbó-Dorca R, Arnau M, Leyda L (1980) Int J Quant Chem 17:1185

    Article  Google Scholar 

  6. Van Damme S, Bultinck P (2010) J Mol Struct (THEOCHEM) 943:83

    Article  Google Scholar 

  7. Van Damme S, Bultinck P (2009) J Comput Chem 30:1749

    Article  Google Scholar 

  8. Amat L, Carbó-Dorca R (2002) Int J Quant Chem 87:59

    Article  CAS  Google Scholar 

  9. Dolezal R, Van Damme S, Bultinck P, Waisser K (2009) Eur J Med Chem 44:869

    Article  CAS  Google Scholar 

  10. Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579

    Article  Google Scholar 

  11. Van Damme S, Langenaeker W, Bultinck P (2008) J Mol Graph Mod 26:1223

    Article  Google Scholar 

  12. Carbó-Dorca R, Gironés X (2005) Int J Quat Chem 101:8

    Article  Google Scholar 

  13. Heidar Zadeh F, Ayers PW (2013) J Math Chem 51:927

    Article  Google Scholar 

  14. Bultinck P, Rafat M, Ponec R, Gheluwe BV, Carbó-Dorca R, Popelier P (2006) J Phys Chem A 110:7642

    Article  CAS  Google Scholar 

  15. Robert D, Amat L, Carbó-Dorca R (1999) J Chem Inf Comp Sci 39:333

    Article  CAS  Google Scholar 

  16. Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125

    Article  CAS  Google Scholar 

  17. Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:1835

    Article  CAS  Google Scholar 

  18. Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1

    Article  Google Scholar 

  19. Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article doi.org/10.1155/2014/239845

  20. Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article doi.org/10.1155/2014/850163

  21. Parr RG, Yang W (1989) Density functional theory of atoms and compounds. Oxford University Press, New York

    Google Scholar 

  22. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  23. Carbó-Dorca R (1998) J Math Chem 23:353

    Article  Google Scholar 

  24. Kumar A, Siddiqi MI (2008) J Mol Model 14:923

    Article  CAS  Google Scholar 

  25. Carbó-Dorca R (1998) Adv Molec Simil 2:43–72

    Article  Google Scholar 

  26. Carbó R, Calabuig B (1992) J Chem Inf Comput Sci 32:600

    Article  Google Scholar 

  27. Carbó-Dorca R, Gironés X (2005) Int J Quant Chem 101:8

    Article  Google Scholar 

  28. Strang G (2005) “3.2”. Linear Algebra and its Applications (4th ed.). Stamford, CT: Cengage Learning, pp 154–155

  29. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198

    Article  Google Scholar 

  30. Randic M, Johnson MA, Maggiora GM (1990) In: Concepts and applications of molecular similarity. Design of compounds with desired properties. Wiley, New York, p 77

  31. Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct 727:49

    Article  CAS  Google Scholar 

  32. Morales-Bayuelo A, Caballero J (2015) J Mol Mod 21:45

    Article  Google Scholar 

  33. Dirac (1958) §15 The δ function, p 58

  34. Nalewajski RF, Parr RG (1982) J Chem Phys 77:399

    Article  CAS  Google Scholar 

  35. Randic M, Wilkins CL (1979) J Chem Inf Comput Sci 19:31

    Article  CAS  Google Scholar 

  36. Parr RG, Donnelly RA, Levy MWE, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  37. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  38. Ayers PW (2007) Faraday Discuss 135:161

    Article  CAS  Google Scholar 

  39. Harbola MK, Chattaraj PK, Parr RG (1991) Isr J Chem 31:395

    Article  CAS  Google Scholar 

  40. Liu SB (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 179

  41. Parr RG, Von Szentpály L, Liu SB (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  42. Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 527:67

    Article  CAS  Google Scholar 

  43. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  44. Yang WT, Parr RG, Pucci R (1984) J Chem Phys 81:2862

    Article  CAS  Google Scholar 

  45. Ayers PW, Levy M (2000) Theor Chem Acc 103:353

    Article  CAS  Google Scholar 

  46. Ayers PW, Yang WT, Bartolotti LJ (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, pp 255

  47. Yang WT, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  CAS  Google Scholar 

  48. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    Article  CAS  Google Scholar 

  49. Ayers P, Parr RG (2000) J Am Chem Soc 122:2010

    Article  CAS  Google Scholar 

  50. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102

  51. Chermette H (1999) J Comput Chem 20:129

    Article  CAS  Google Scholar 

  52. Mortier WJ, Yang W (1986) J Am Chem Soc 108:5708

    Article  Google Scholar 

  53. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520

    Article  CAS  Google Scholar 

  54. Liu SB (2009) Acta Physico Chimica Sinica 25:590

    CAS  Google Scholar 

  55. Gazquez JL (2008) J Mex Chem Soc 52:3

    CAS  Google Scholar 

  56. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715

  57. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  58. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  60. Frisch MJG, Trucks W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Revision C.01. Gaussian Inc., Wallingford

  61. Carbó-Dorca R, Besalú E, Amat L, Fradera X (1995) J Math Chem 18:237

    Article  Google Scholar 

  62. Besalú E, Girones X, Amat L, Carbó-Dorca R (2002) Acc Chem Res 35:289

    Article  Google Scholar 

Download references

Acknowledgments

Thanks Universidad de Talca (Talca-Chile) through the postdoctoral project N0 3150035 (FONDECYT, CHILE) and thank you very much Dr. Alejandro Toro-labbé associate editor (Journal of Molecular Modeling, JMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Morales-Bayuelo.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Bayuelo, A. Analyzing the substitution effect on the CoMFA results within the framework of density functional theory (DFT). J Mol Model 22, 164 (2016). https://doi.org/10.1007/s00894-016-3036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3036-7

Keywords

Navigation