Abstract
Though QSAR was originally developed in the context of physical organic chemistry, it has been applied very extensively to chemicals (drugs) which act on biological systems, in this idea one of the most important QSAR methods is the 3D QSAR model. However, due to the complexity of understanding the results it is necessary to postulate new methodologies to highlight their physical-chemical meaning. In this sense, this work postulates new insights to understand the CoMFA results using molecular quantum similarity and chemical reactivity descriptors within the framework of density functional theory. To obtain these insights a simple theoretical scheme involving quantum similarity (overlap, coulomb operators, their euclidean distances) and chemical reactivity descriptors such as chemical potential (μ), hardness (ɳ), softness (S), electrophilicity (ω), and the Fukui functions, was used to understand the substitution effect. In this sense, this methodology can be applied to analyze the biological activity and the stabilization process in the non-covalent interactions on a particular molecular set taking a reference compound.
Similar content being viewed by others
References
Morales-Bayuelo A, Matute RA, Caballero J (2015) J Mol Model 21:156
Morales-Bayuelo A, Caballero J (2015) Mol2Net. 2015. 1(Section B):1–13. Proceedings
Bultinck P, Girones X, Carbó-Dorca R (2005) Rev Comput Chem 21:127
Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2003) J Phys Chem A 107:11120
Carbó-Dorca R, Arnau M, Leyda L (1980) Int J Quant Chem 17:1185
Van Damme S, Bultinck P (2010) J Mol Struct (THEOCHEM) 943:83
Van Damme S, Bultinck P (2009) J Comput Chem 30:1749
Amat L, Carbó-Dorca R (2002) Int J Quant Chem 87:59
Dolezal R, Van Damme S, Bultinck P, Waisser K (2009) Eur J Med Chem 44:869
Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579
Van Damme S, Langenaeker W, Bultinck P (2008) J Mol Graph Mod 26:1223
Carbó-Dorca R, Gironés X (2005) Int J Quat Chem 101:8
Heidar Zadeh F, Ayers PW (2013) J Math Chem 51:927
Bultinck P, Rafat M, Ponec R, Gheluwe BV, Carbó-Dorca R, Popelier P (2006) J Phys Chem A 110:7642
Robert D, Amat L, Carbó-Dorca R (1999) J Chem Inf Comp Sci 39:333
Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125
Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:1835
Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1
Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article doi.org/10.1155/2014/239845
Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article doi.org/10.1155/2014/850163
Parr RG, Yang W (1989) Density functional theory of atoms and compounds. Oxford University Press, New York
Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793
Carbó-Dorca R (1998) J Math Chem 23:353
Kumar A, Siddiqi MI (2008) J Mol Model 14:923
Carbó-Dorca R (1998) Adv Molec Simil 2:43–72
Carbó R, Calabuig B (1992) J Chem Inf Comput Sci 32:600
Carbó-Dorca R, Gironés X (2005) Int J Quant Chem 101:8
Strang G (2005) “3.2”. Linear Algebra and its Applications (4th ed.). Stamford, CT: Cengage Learning, pp 154–155
De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198
Randic M, Johnson MA, Maggiora GM (1990) In: Concepts and applications of molecular similarity. Design of compounds with desired properties. Wiley, New York, p 77
Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct 727:49
Morales-Bayuelo A, Caballero J (2015) J Mol Mod 21:45
Dirac (1958) §15 The δ function, p 58
Nalewajski RF, Parr RG (1982) J Chem Phys 77:399
Randic M, Wilkins CL (1979) J Chem Inf Comput Sci 19:31
Parr RG, Donnelly RA, Levy MWE, Palke WE (1978) J Chem Phys 68:3801
Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512
Ayers PW (2007) Faraday Discuss 135:161
Harbola MK, Chattaraj PK, Parr RG (1991) Isr J Chem 31:395
Liu SB (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. Taylor and Francis, Boca Raton, p 179
Parr RG, Von Szentpály L, Liu SB (1999) J Am Chem Soc 121:1922
Zielinski F, Tognetti V, Joubert L (2012) Chem Phys Lett 527:67
Parr RG, Yang WT (1984) J Am Chem Soc 106:4049
Yang WT, Parr RG, Pucci R (1984) J Chem Phys 81:2862
Ayers PW, Levy M (2000) Theor Chem Acc 103:353
Ayers PW, Yang WT, Bartolotti LJ (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, pp 255
Yang WT, Mortier WJ (1986) J Am Chem Soc 108:5708
Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065
Ayers P, Parr RG (2000) J Am Chem Soc 122:2010
Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 127:034102
Chermette H (1999) J Comput Chem 20:129
Mortier WJ, Yang W (1986) J Am Chem Soc 108:5708
Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520
Liu SB (2009) Acta Physico Chimica Sinica 25:590
Gazquez JL (2008) J Mex Chem Soc 52:3
Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715
Becke AD (1993) J Chem Phys 98:5648
Becke AD (1988) Phys Rev A 38:3098
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
Frisch MJG, Trucks W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Revision C.01. Gaussian Inc., Wallingford
Carbó-Dorca R, Besalú E, Amat L, Fradera X (1995) J Math Chem 18:237
Besalú E, Girones X, Amat L, Carbó-Dorca R (2002) Acc Chem Res 35:289
Acknowledgments
Thanks Universidad de Talca (Talca-Chile) through the postdoctoral project N0 3150035 (FONDECYT, CHILE) and thank you very much Dr. Alejandro Toro-labbé associate editor (Journal of Molecular Modeling, JMM).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 14 kb)
Rights and permissions
About this article
Cite this article
Morales-Bayuelo, A. Analyzing the substitution effect on the CoMFA results within the framework of density functional theory (DFT). J Mol Model 22, 164 (2016). https://doi.org/10.1007/s00894-016-3036-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-016-3036-7