First-principle investigation on growth patterns and properties of cobalt-doped lithium nanoclusters

  • Zhenjun Song
Original Paper


A systematic theoretical investigation on cobalt lithium clusters LinCo [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] was performed with a DFT approach. The location of global minima and structural evolution were carried out using the partical swarm optimization method. Li6Co is the transition structure in going from low-coordinated structures to three-dimensional torispherical structures with a cobalt atom enclosed by lithium atoms. Maxima of ∆2 E and E b for LinCo were found at n = 3, 6, 8, 10, indicating that these clusters possess higher relative stability than their neighbors. In comparison with small clusters, n = 1–6, the greater electron transfer from Li-2s to Co-3d within cage-like clusters LinCo (n = 7–12) strengthens the bonding effect between Lin and Co, which is reflected in the Wiberg bond index of Co and atomic binding energy analysis. AdNDP analysis verified the presence of both Lewis bonding elements (1c–2e objects) and delocalized bonding elements (6c–2e, 9c–2e and 10c–2e bonds). It is hoped that this theoretical work will provide favorable information to help understand the influence of dopant transition metal atoms on the properties of lithium-based materials.


Lithium cluster Cobalt DFT Partical swarm optimization 



This work was supported financially by National Natural Science Foundation of China (NSFC Grant No.11204185 and 11334003). The author also acknowledges the National Supercomputing Center in Shenzhen for providing computational resources.

Supplementary material

894_2016_3002_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3224 kb)


  1. 1.
    Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S (1996) Synthesis and electrochemical studies of a new anode material, Li3-Xcoxn. Solid State Ionics 83:107–111CrossRefGoogle Scholar
  2. 2.
    Stoeva Z, Smith RI, Gregory DH (2006) Stoichiometry and defect structure control in the ternary lithium nitridometalates Li3-X-Ynixn. Chem Mater 18:313–320CrossRefGoogle Scholar
  3. 3.
    Shodai T, Okada S, Tobishima S, Yamaki J (1996) Study of Li(3-X)M(X)N (M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 86–8:785–789CrossRefGoogle Scholar
  4. 4.
    Rowsell JLC, Pralong V, Nazar LF (2001) Layered lithium iron nitride: a promising anode material for Li-Ion batteries. J Am Chem Soc 123:8598–8599CrossRefGoogle Scholar
  5. 5.
    Cabana J, Ionica-Bousquet CM, Grey CP, Palacin MR (2010) High rate performance of lithium manganese nitride and oxynitride as negative electrodes in lithium batteries. Electrochem Commun 12:315–318CrossRefGoogle Scholar
  6. 6.
    Parry IS, Kartouzian A, Hamilton SM, Balaj OP, Beyer MK, Mackenzie SR (2015) Chemical reactivity on gas-phase metal clusters driven by blackbody infrared radiation. Angew Chem Int Ed 54:1357–1360CrossRefGoogle Scholar
  7. 7.
    Moses MJ, Fettinger JC, Eichhorn BW (2003) Interpenetrating as-20 fullerene and Ni-12 icosahedra in the onion-skin [as@Ni-12@as-20](3-) Ion. Science 300:778–780CrossRefGoogle Scholar
  8. 8.
    Kelty SP, Chen CC, Lieber CM (1991) Superconductivity at 30-K in cesium-doped C60. Nature 352:223–225CrossRefGoogle Scholar
  9. 9.
    Yano J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4ca cluster. Science 314:821–825CrossRefGoogle Scholar
  10. 10.
    Yano J, Yachandra V (2014) Mn4ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 114:4175–4205CrossRefGoogle Scholar
  11. 11.
    Bethune DS, Johnson RD, Salem JR, Devries MS, Yannoni CS (1993) Atoms in carbon cages - the structure and properties of endohedral fullerenes. Nature 366:123–128CrossRefGoogle Scholar
  12. 12.
    Jones RO, Lichtenstein A, Hutter J (1997) Density functional study of structure and bonding in lithium clusters Li-N and their oxides lino. J Chem Phys 106:4566–4574CrossRefGoogle Scholar
  13. 13.
    Kudo H, Wu CH, Ihle HR (1978) Mass-spectrometric study of vaporization of Li2o(S) and thermochemistry of gaseous Lio, Li2o, Li3o, and Li2o2. J Nucl Mater 78:380–389CrossRefGoogle Scholar
  14. 14.
    Deshpande M, Dhavale A, Zope RR, Chacko S, Kanhere DG (2000) Ground-State geometries and stability of impurity doped clusters: Linbe and Linmg (N=1–12). Phys Rev A 62Google Scholar
  15. 15.
    Li Y, Liu YJ, Wu D, Li ZR (2009) Evolution of the structures and stabilities of boron-doped lithium cluster cations: Ab initio and Dft studies. Phys Chem Chem Phys 11:5703–5710CrossRefGoogle Scholar
  16. 16.
    Li Y, Wu D, Li ZR, Sun CC (2007) Structural and electronic properties of boron-doped lithium clusters: ab initio and DFT studies. J Comput Chem 28:1677–1684CrossRefGoogle Scholar
  17. 17.
    Tong J, Li Y, Wu D, Li ZR, Huang XR (2009) Low ionization potentials of binuclear superalkali B2li11. J Chem Phys 131Google Scholar
  18. 18.
    Tai TB, Nguyen MT (2010) The high stability of boron-doped lithium clusters Li5b, Li6b+/− and Li7b: a case of the phenomenological shell model. Chem Phys Lett 489:75–80CrossRefGoogle Scholar
  19. 19.
    Shah V, Kanhere DG (1996) Ground-state geometries and the stability of some Linal(M) clusters investigated using density-based Ab initio molecular dynamics. J Phys Condens Matter 8:L253–L260CrossRefGoogle Scholar
  20. 20.
    Lievens P, Thoen P, Bouckaert S, Bouwen W, Vanhoutte F, Weidele H, Silverans RE, Navarro-Vazquez A, Schleyer PV (1999) Ionization potentials of hypervalent Linc (2 <= N <= 10). Eur Phys J D 9:289–295CrossRefGoogle Scholar
  21. 21.
    Joshi K, Kanhere DG (2002) Ab initio investigation of electronic structure, equilibrium geometries, and finite-temperature behavior of Sn-Doped Li-N clusters. Phys Rev A 65:043203Google Scholar
  22. 22.
    Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study. J Am Chem Soc 132:15589–15602CrossRefGoogle Scholar
  23. 23.
    Ngan VT, De Haeck J, Le HT, Gopakumar G, Lievens P, Nguyen MT (2009) Experimental detection and theoretical characterization of germanium-doped lithium clusters linge (N=1–7). J Phys Chem A 113:9080–9091CrossRefGoogle Scholar
  24. 24.
    Lievens P, Thoen P, Bouckaert S, Bouwen W, Vanhoutte F, Weidele H, Silverans RE, Navarro-Vazquez A, Schleyer PV (1999) Ionization potentials of lino (2 <= N <= 70) clusters: experiment and theory. J Chem Phys 110:10316–10329CrossRefGoogle Scholar
  25. 25.
    Tai TB, Nguyen MT (2012) Electronic structure and thermochemical properties of silicon-doped lithium clusters Linsi0/+, N=1–8: new insights on their stability. J Comput Chem 33:800–809CrossRefGoogle Scholar
  26. 26.
    Tighezza A, Rehspringer JL, Kappler JP, Drillon M (1993) Evidence of superconductivity at 30-K in Pr2cuo4-Xfx. Solid State Commun 86:59–62CrossRefGoogle Scholar
  27. 27.
    Knight WD, Clemenger K, Deheer WA, Saunders WA, Chou MY, Cohen ML (1984) Electronic shell structure and abundances of sodium clusters. Phys Rev Lett 52:2141–2143CrossRefGoogle Scholar
  28. 28.
    Velickovic SR, Koteski VJ, Cavor JNB, Djordjevic VR, Cveticanin JM, Djustebek JB, Veljkovic MV, Neskovic OM (2007) Experimental and theoretical investigation of new hypervalent molecules Linf (N=2–4). Chem Phys Lett 448:151–155CrossRefGoogle Scholar
  29. 29.
    Velickovic S, Djordjevic V, Cveticanin J, Djustebek J, Veljkovic M, Neskovic O (2006) Ionization energies of Linx(N=2,3; X=Cl, Br, I) molecules. Rapid Commun Mass Spectrom 20:3151–3153CrossRefGoogle Scholar
  30. 30.
    Senturk S (2011) A density functional study of Lincl (N=1–7) clusters. Z Naturforsch A 66:372–376CrossRefGoogle Scholar
  31. 31.
    Velickovic SR, Dustebek JB, Veljkovic FM, Veljkovic MV (2012) Formation of positive cluster ions Linbr (N=2–7) and ionization energies studied by thermal ionization mass spectrometry. J Mass Spectrom 47:627–631CrossRefGoogle Scholar
  32. 32.
    Senturk S, Unal A, Kalfa OM (2013) Density functional study of bromine-doped lithium clusters. Comput Theor Chem 1023:46–50CrossRefGoogle Scholar
  33. 33.
    Dustebek J, Milovanovic M, Jerosimic S, Veljkovic M, Velickovic S (2013) Theoretical and experimental study of the non-stoichiometric lini (N=3 and 5) clusters. Chem Phys Lett 556:380–385CrossRefGoogle Scholar
  34. 34.
    Zhang M, Zhang JF, Feng XJ, Zhang HY, Zhao LX, Luo YH, Cao W (2013) Magnetic superatoms in Vlin (N=1–13) clusters: a first-principles prediction. J Phys Chem A 117:13025–13036CrossRefGoogle Scholar
  35. 35.
    Srivastava AK, Misra N (2014) Unusual properties of novel Li3f3 ring: (Lif2-Li2f) superatomic cluster or lithium fluoride trimer, (Lif)(3)? RSC Adv 4:41260–41265CrossRefGoogle Scholar
  36. 36.
    Donoso R, Cardenas C, Fuentealba P (2014) Ab Lnitio molecular dynamics study of small alkali metal clusters. J Phys Chem A 118:1077–1083CrossRefGoogle Scholar
  37. 37.
    Muz I, Atis M, Canko O (2014) Stochastic search, fragmentation, electronic and reactivity properties of neutral and cationic hydrogenated Li-6 clusters. J Mol Struct 1065:65–73CrossRefGoogle Scholar
  38. 38.
    Ruan W, Xie AD, Wu DL, Luo WL, Yu XG (2014) The geometry structures and electronic properties of Limbn (M+N=12) Clusters. Chinese Phys B 23Google Scholar
  39. 39.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular-orbital methods.25. Supplementary functions for gaussian-basis sets. J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  40. 40.
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted abinitio pseudopotentials for the 2nd and 3rd Row transition-elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  41. 41.
    Wang YC, Lv JA, Zhu L, Ma YM (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82Google Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ã, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision B.01. Gaussian Inc., WallingfordGoogle Scholar
  43. 43.
    Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-hartree-fock water dimer. J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  44. 44.
    Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefGoogle Scholar
  45. 45.
    Nyulaszi L (2001) Aromaticity of phosphorus heterocycles. Chem Rev 101:1229–1246CrossRefGoogle Scholar
  46. 46.
    Nyulaszi L, Keglevich G (1994) Study on the aromaticity and reactivity of chlorophosphinines. Heteroat Chem 5:131–137CrossRefGoogle Scholar
  47. 47.
    Nyulaszi L, Veszpremi T, Reffy J, Burkhardt B, Regitz M (1992) Electronic-structure and aromaticity of azaphospholes. J Am Chem Soc 114:9080–9084CrossRefGoogle Scholar
  48. 48.
    Galeev TR, Boldyrev AI (2011) Planarity takes over in the Cxhxp6-X (X=0–6) Series at X=4. Phys Chem Chem Phys 13:20549–20556CrossRefGoogle Scholar
  49. 49.
    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C-60—a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  50. 50.
    Mulliken RS (1962) Criteria for construction of good self-consistent-field molecular orbital wave functions, and significance of Lcao-Mo population analysis. J Chem Phys 36:3428CrossRefGoogle Scholar
  51. 51.
    Politzer P, Mulliken RS (1971) Comparison of 2 atomic charge definitions, as applied to hydrogen fluoride molecule. J Chem Phys 55:5135CrossRefGoogle Scholar
  52. 52.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  53. 53.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge-densities. Theor Chim Acta 44:129–138CrossRefGoogle Scholar
  54. 54.
    Srivastava AK, Misra N (2014) Structures, stabilities, electronic and magnetic properties of small rhxmny (X+Y =2–4) clusters. Comput Theor Chem 1047:1–5CrossRefGoogle Scholar
  55. 55.
    Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsSouth University of Science and Technology of ChinaShenzhenChina

Personalised recommendations