Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain

  • Paweł SzarekEmail author
  • Wojciech Wegner
  • Wojciech Grochala
Original Paper


Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S = 6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe2+ sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands.

Graphical abstract

Effect of d(z2) orbital occupancy on central Fe(II) on spin orientations on termianal Fe(II) ions in extended metal atom chain


Exchange interaction Magnetic coupling constant Trimetallic complex EMAC Spin projection Molecular magnet 

Supplementary material

894_2016_2928_MOESM1_ESM.pdf (201 kb)
ESM 1 (PDF 201 kb)


  1. 1.
    Berry JF, Cotton FA, Peng L, Murillo CA (2003) Further structural and magnetic studies of tricopper dipyridylamido complexes. Inorg Chem 42:377–382CrossRefGoogle Scholar
  2. 2.
    Clérac R, Cotton FA, Daniels LM, Dunbar KR, Kirschbaum K, Murillo CA, Pinkerton AA, Schultz AJ, Wang X (2000) Linear tricobalt compounds with di(2-pyridyl)amide (dpa) ligands: temperature dependence of the structural and magnetic properties of symmetrical and unsymmetrical forms of Co3(dpa)4Cl2 in the solid state. J Am Chem Soc 122:6226–6236Google Scholar
  3. 3.
    Benbellat N, Rohmer M-M, Bénard M (2001) Electronic origin of the structural versatility in linear trichromium complexes of dipyridylamide. Chem Commun 21:2368–2369CrossRefGoogle Scholar
  4. 4.
    Tabookht Z, López X, de Graaf C (2010) Analysis of the magnetic coupling in M3(dpa)4Cl2 systems (M = Ni, Pd, Cu, Ag) by ab initio calculations. J Phys Chem A 114:2028–2037Google Scholar
  5. 5.
    Parkin G (ed) (2010) Metal–metal bonding. Springer, BerlinGoogle Scholar
  6. 6.
    Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, New YorkGoogle Scholar
  7. 7.
    Szarek P, Grochala W (2015) Fine-tuning of magnetic properties in nickel(II) trinuclear EMACs via modifications of equatorial ligands. J Phys Chem A 119:9363–9372CrossRefGoogle Scholar
  8. 8.
    Malrieu JP, Caballol R, Calzado CJ, de Graaf C, Guihéry N (2014) Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. Chem Rev 114:429–492CrossRefGoogle Scholar
  9. 9.
    Yamaguchi K, Takahara Y, Fueno T, Nasu K (1987) Ab initio MO calculations of effective exchange integrals between transition-metal ions via oxygen dianions: nature of the copper–oxygen bonds and superconductivity. Jpn J Appl Phys 26:L1362–L1364Google Scholar
  10. 10.
    Nakano S, Kitagawa Y, Kawakami T, Yamaguchi K (2003) Hybrid DFT study of electronic structure on quasi-one-dimensional halogen-bridged binuclear metal complexes (MMX). Polyhedron 22:2027–2038CrossRefGoogle Scholar
  11. 11.
    Ruiz E, Rodríguez-Fortea A, Cano J, Alvarez S, Alemany P (2003) About the calculation of exchange coupling constants in polynuclear transition metal complexes. J Comput Chem 24:982–989CrossRefGoogle Scholar
  12. 12.
    Noodleman L, Peng CY, Case DA, Mouesca J-M (1995) Orbital interactions, electron delocalization and spin coupling in iron–sulfur clusters. Coord Chem Rev 144:199–244Google Scholar
  13. 13.
    Labéguerie P, Rohmer M-M, Bénard M (2009) DFT modelling of the magnetic coupling in a di- and in a trinuclear Robson-type complexes of CuII. J Chin Chem Soc 56:22–25CrossRefGoogle Scholar
  14. 14.
    Mañeru DR, Costa R, Márquez MG, Moreira I de PR, Illas F (2015) Handling magnetic coupling in trinuclear Cu(II) complexes. J Chem Theory Comput 11:3650–3660CrossRefGoogle Scholar
  15. 15.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401CrossRefGoogle Scholar
  16. 16.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) Long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  17. 17.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  18. 18.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  19. 19.
    Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954CrossRefGoogle Scholar
  20. 20.
    Machado SF, Camiletti GG, Canal NA, Jorge FE, Jorge RS (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727CrossRefGoogle Scholar
  21. 21.
    Cramer CJ, Truhlar DG (2009) Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 11:10757–10816CrossRefGoogle Scholar
  22. 22.
    Bandeira NAG, Tabookht Z, de Graaf C, López X (2012) Simple versus composite nature of the magnetic coupling in copper and nickel-based metallic chains. Over- and underestimation of J. C R Chimie 15:163–169Google Scholar
  23. 23.
    Sundberg RJ, Martin RB (1974) Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev 74:471–517CrossRefGoogle Scholar
  24. 24.
    Winter M (2015) WebElements: the periodic table on the WWW (and references therein). Accessed on 28 Oct 2015
  25. 25.
    Cotton FA, Daniels LM, Matonic JH, Murillo CA (1997) Highly distorted diiron(II, II) complexes containing four amidinate ligands. A long and a short metal-metal distance. Inorg Chim Acta 256:277–282CrossRefGoogle Scholar
  26. 26.
    Cornia A, Rigamonti L, Boccedi S, Clérac R, Rouzières M, Sorace L (2014) Magnetic blocking in extended metal atom chains: a pentachromium(II) complex behaving as a single-molecule magnet. Chem Commun 50:15191–15194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paweł Szarek
    • 1
    Email author
  • Wojciech Wegner
    • 1
    • 2
  • Wojciech Grochala
    • 1
  1. 1.Centre of New TechnologiesUniversity of WarsawWarsawPoland
  2. 2.College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of WarsawWarsawPoland

Personalised recommendations