Skip to main content

Advertisement

Log in

On the vibrational behavior of single- and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317

    Article  CAS  Google Scholar 

  2. Aloui W, Ltaief A, Bouazizi A (2013) Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications. Superlattices Microst 64:581

    Article  CAS  Google Scholar 

  3. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM et al (1999) Carbon nanotube actuators. Science 284:1340

    Article  CAS  Google Scholar 

  4. Xie XL, Mai YW, Ping X (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng Rep 49:89

    Article  Google Scholar 

  5. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31

    Article  CAS  Google Scholar 

  6. Zhang X, Sreekumar TV, Liu T, Kumar S (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 108:16435

    Article  CAS  Google Scholar 

  7. Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem Eur J 10:813

    Article  Google Scholar 

  8. Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 124:14318

  9. Gogotsi Y, Libera JA, Güvenç-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79:1021

    Article  CAS  Google Scholar 

  10. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193

    Article  Google Scholar 

  11. Ajori S, Ansari R, Darvizeh M (2015) Vibration characteristics of single-and double-walled carbon nanotubes functionalized with amide and amine groups. Physica B 462:8

    Article  CAS  Google Scholar 

  12. Ajori S, Ansari R (2015) Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations. Physica B 459:58

    Article  CAS  Google Scholar 

  13. Sansom MSP, Biggin PC (2001) Biophysics: water at the nanoscale. Nature 414:156

  14. Wang HJ, Xi XK, Kleinhammes A, Wu Y (2008) Temperature-induced hydrophobic–hydrophilic transition observed by water adsorption. Science 322:80

  15. Striolo A, Chialvo AA, Gubbins KE, Cummings PT (2005) Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J Chem Phys 122:234712

    Article  CAS  Google Scholar 

  16. Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Jayanthi CS, Tang M, Wu SY (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769

  17. Salazar-Salinas K, Kubli-Garfias C, Seminario JM (2013) Computational design of a CNT carrier for a high affinity bispecific anti-HER2 antibody based on trastuzumab and pertuzumab Fabs. J Mol Model 19(7):2797

    Article  CAS  Google Scholar 

  18. Erlanger BF, Chen B-X, Zhu M, Brus L (2001) Binding of an anti-fullerene IgG monoclonal antibody to single wall carbon nanotubes. Nano Lett 1:465

    Article  CAS  Google Scholar 

  19. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun Y-P (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2:311–314

    Article  CAS  Google Scholar 

  20. Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 7:5361

    CAS  Google Scholar 

  21. Chen RJ, Zhang YJ, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  22. Bobadilla A, Seminario JM (2012) Self-assembly of DNA on a gapped carbon nanotube. J Mol Model 18(7):3291

    Article  CAS  Google Scholar 

  23. Bobadilla A, Seminario JM (2011) DNA–CNT interactions and gating mechanism using MD and DFT. J Phys Chem C 115(8):3466

  24. Johnson RR, Charlie Johnson AT, Klein ML (2008) Probing the structure of DNA–carbon nanotube hybrids with molecular dynamics. Nano Lett 8:69

  25. Song C, Xia Y, Zhao M, Liu X, Huang B, Li F (2005) Self-assembly of base-functionalized carbon nanotubes. Phys Rev B 72:165430

    Article  Google Scholar 

  26. Das A, Sood AK, Maiti PK, Das M, Varadarajan R, Rao CNR (2008) Binding of nucleobases with single-walled carbon nanotubes: theory and experiment. Chem Phys Lett 453:266

    Article  CAS  Google Scholar 

  27. Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly–disassembly control. Nanotechnology 20:395101

  28. Singh P, Toma FM, Kumar J, Venkatesh V, Raya J, Prato M, Verma S, Bianco A (2011) Carbon nanotube–nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes. Chem Eur J 17:6772

    Article  CAS  Google Scholar 

  29. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Doeckmann GR, Draper RK, Baughman RH, Musselman IH (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127:12323

    Article  CAS  Google Scholar 

  30. Fan W, Zeng J, Zhang R (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5:2879

    Article  CAS  Google Scholar 

  31. Wang Y, Ai H (2009) Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs. J Phys Chem B 113:9620

    Article  CAS  Google Scholar 

  32. Roman T, Dino WA, Nakanishi H, Kasai H (2006) Amino acid. Adsorption on single-walled carbon nanotubes. Eur Phys J D 38:117

    Article  CAS  Google Scholar 

  33. Zhang Y, Li J, Shen Y, Wang M, Li J (2004) Poly-L-lysine functionalization of single-walled carbon nanotube. J Phys Chem B 108:15343

  34. Piao L, Liu Q, Li Y (2012) Interaction of amino acids and single-wall carbon nanotubes. J Phys Chem C 116:1724

    Article  CAS  Google Scholar 

  35. Silambarasan D, Iyakutti K, Vasu V (2014) Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and l-alanine. Chem Phys Lett 604:83

    Article  CAS  Google Scholar 

  36. Rajarajeswari M, Iyakutti K, Kawazoe Y (2011) Adsorption mechanism of single guanine and thymine on single-walled carbon nanotubes. J Mol Model 17:2773

    Article  CAS  Google Scholar 

  37. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    Article  CAS  Google Scholar 

  38. Grindon C, Harris S, Evans T, Novik K, Coveney P, Laughton C (2004) Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS. Philos Trans R Soc Lond A 362:1373

    Article  Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM et al (1995) A second generation force field for the simulation of proteins and nucleic acids. J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157

  41. Zhang CL, Shen HS (2008) Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys D Appl Phys 41:055404

    Article  Google Scholar 

  42. Allen MP, Tildesley DJ (1986) Computer simulation of liquids. Oxford University Press, New York

  43. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  Google Scholar 

  44. Ansari R, Ajori S, Arash B (2012) Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: a molecular dynamics study. Curr Appl Phys 12:707

    Article  Google Scholar 

  45. Ansari R, Ajori S, Ameri A (2015) On the vibrational characteristics of single-and double-walled carbon nanotubes containing ice nanotube in aqueous environment. Appl Phys A 121:223

    Article  CAS  Google Scholar 

  46. Zhang YY, Wang CM, Tan VBC (2009) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1:89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ajori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Ansari, R. & Darvizeh, M. On the vibrational behavior of single- and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study. J Mol Model 22, 62 (2016). https://doi.org/10.1007/s00894-016-2927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2927-y

Keyword

Navigation