Skip to main content

Advertisement

Log in

Mechanistic investigation of palladium-catalyzed amidation of aryl halides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A mechanistic investigation using Becke3LYP density functional theory (DFT) was carried out on the palladium-catalyzed amidition of bromobenzene and tBu-isocyanide. The whole catalytic cycle consists of five steps: oxidative addition, migratory insertion, anion exchange, reductive elimination, and hydrogen migration. The rate-determining step is oxidative addition, with a small Gibbs free energy of 14.6 kcal mol−1. In the migratory insertion step, tBu-isocyanide provides an important source of carboxy and amino groups to establish the amide group. For anion exchange, path 1a is suggested as the most favorable pathway with the help of the base, and water provides a source of oxygen which is perfectly in line with experimental observations. Finally, in the hydrogen migration step, we illustrate that the six-membered ring path is energetically favored due to the assisting influence of water. In addition, our calculations indicate that using dimethyl sulfoxide as a solvent does not change the rate-determining step.

Palladium-catalyzed amidation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Qiu GYS, Ding QP, Wu J (2013) Recent advances in isocyanide insertion chemistry. Chem Soc Rev 42:5257–5269

    Article  CAS  Google Scholar 

  2. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  3. Vaidyanathan R, Kalthod VG, Ngo DP, Manley JM, Lapekas SP (2004) Amidations using N, N-carbonyldiimidazole: remarkable rate enhancement by carbon dioxide. J Org Chem 69:2565–2568

    Article  CAS  Google Scholar 

  4. Shendage DM, Frohlich R, Haufe G (2004) Highly efficient stereoconservative amidation and deamidation of r-amino acids. Org Lett 6:3675–3678

    Article  CAS  Google Scholar 

  5. Baum JC, Milne JEM, Murry JA, Thiel OR (2009) An efficient and scalable Ritter reaction for the synthesis of tert-butyl amides. J Org Chem 74:2207–2209

    Article  CAS  Google Scholar 

  6. Shimizu K, Ohshima K, Satsuma A (2009) Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by g-alumina supported silver cluster. Chem Eur J 15:9977–9980

    Article  CAS  Google Scholar 

  7. Watson AJA, Maxwell AC, Williams JMJ (2009) Ruthenium-catalyzed oxidation of alcohols into amides. Org Lett 11:2667–2670

    Article  CAS  Google Scholar 

  8. Fujita K, Takahashi Y, Owaki M, Yamamoto K, Yamaguchi R (2004) Synthesis of five-, Six-, and seven-membered ring lactams by Cp*Rh complex-catalyzed oxidative N-heterocyclization of amino alcohols. Org Lett 6:2785–2788

    Article  CAS  Google Scholar 

  9. Schoenberg A, Heck RF (1974) Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J Org Chem 39:1974–3327

    Google Scholar 

  10. Orito K, Miyazawa M, Nakamura T, Horibata A, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Yamazaki T, Tokuda M (2006) Pd(OAc)2-catalyzed carbonylation of amines. J Org Chem 71:5951–5958

    Article  CAS  Google Scholar 

  11. Martinelli JR, Freckmann DMM, Buchwald SL (2006) Convenient method for the preparation of weinreb amides via Pd-catalyzed aminocarbonylation of aryl bromides at atmospheric pressure. Org Lett 8:4843–4846

    Article  CAS  Google Scholar 

  12. Ren W, Yamane M (2010) Carbamoylation of aryl halides by molybdenum or tungsten carbonyl amine complexes. J Org Chem 75:3017–3020

    Article  CAS  Google Scholar 

  13. Ren W, Yamane M (2009) Palladium-catalyzed carbamoylation of aryl halides by tungsten carbonyl amine complex. J Org Chem 74:8332–8335

    Article  CAS  Google Scholar 

  14. Gulevich AV, Zhdanko AG, Orru RVA, Nenajdenko VG (2010) Isocyanoacetate derivatives: synthesis, reactivity, and application. Chem Rev 110:5235–5331

    Article  CAS  Google Scholar 

  15. Jiang HF, Liu BF, Li YB, Wang AZ, Huang HW (2011) Synthesis of amides via palladium catalyzed amidation of aryl halides. Org Lett 13:1028–1031

    Article  CAS  Google Scholar 

  16. Kosugi M, Ogata T, Tamura H, Sano H, Migita T (1986) Palladium catalyzed iminocarbonylation of bromobenzene with isocyanide and organotin compound. Chem Letts 1986:1197–1200

  17. Saluste CG, Whitby RJ, Furber M (2000) A palladium-catalyzed synthesis of amidines from aryl halides. Angew Chem Int Ed 39:4156–4158

    Article  CAS  Google Scholar 

  18. Onitsuka K, Suzuki S, Takahashi S (2002) A novel route to 2,3-disubstituted indoles via palladium-catalyzed three-component coupling of aryl iodide, o-alkenylphenyl isocyanide and amine. Tetrahedron Lett 43:6197–6199

    Article  CAS  Google Scholar 

  19. Carvajal MA, Miscione GP, Novoa JJ, Bottoni A (2005) DFT computational study of the mechanism of allyl chloride carbonylation catalyzed by palladium complexes. Organometallics 24:2086–2096

    Article  CAS  Google Scholar 

  20. Hu YH, Liu J, Lu ZX, Luo XC, Zhang H, Lan Y, Lei AW (2010) Base-induced mechanistic variation in palladium-catalyzed carbonylation of aryl iodides. J Am Chem Soc 132:3153–3158

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT.

  22. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  23. Stephens PJ, Devlin FJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11624–11627

    Article  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37:785–789

    Article  CAS  Google Scholar 

  26. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  27. Wadt WR, Hay PJ (1985) Ab Initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  28. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chern Phys 82:299–310

    Article  CAS  Google Scholar 

  29. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  30. Ariafard A, Yates BF (2009) Subtle balance of ligand steric effects in stille transmetalation. J Am Chem Soc 131:13981–13991

    Article  CAS  Google Scholar 

  31. Fuku K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368

    Article  Google Scholar 

  32. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chem Acta 44:129–138

    Article  CAS  Google Scholar 

  33. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  34. Ren Y, Jia JF, Zhang TT, Wu HS, Liu WX (2012) Computational study on the palladium-catalyzed allenylative dearomatization reaction. Organometallics 31:1168–1179

    Article  CAS  Google Scholar 

  35. Ren Y, Jia JF, Liu WX, Wu HS (2013) Theoretical study on the mechanism of palladium-catalyzed dearomatization reaction of chloromethylnaphthalene. Organometallics 32:52–62

    Article  CAS  Google Scholar 

  36. Soomro SS, Ansari FL, Chatziapostolou K, Köhler K (2010) Palladium leaching dependent on reaction parameters in Suzuki–Miyaura coupling reactions catalyzed by palladium supported on alumina under mild reaction conditions. J Catal 273:138–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundations of China (21501115, 21373131, and 21571119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Hai-Shun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.08 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Ren, Y., Jia, J. et al. Mechanistic investigation of palladium-catalyzed amidation of aryl halides. J Mol Model 22, 53 (2016). https://doi.org/10.1007/s00894-016-2920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2920-5

Keywords

Navigation