Dyotropic rearrangement of bridgehead substituents in closed dithienylethenes; conjugated verses non-conjugated analogues


Type I dyotropic rearrangement reactions of halogen and methyl substituents at the bridgehead position of diarylethenes and dihydroarylethenes have been studied through density functional theory at B3LYP/6-31+G(d) level. The calculations have been performed to explore the dyotropic rearrangement as a possible factor for the elusive nature of halogenated dithienylethenes (closed). The dyotropic rearrangement process in closed dithienylethenes is then compared with the dihydro analogues. Moreover, the effect of hetero atom and conjugation is also explored through quantum mechanical calculations.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Fernández I, Cossío FP, Sierra MA (2009) Chem Rev 109:6687–6711

    Article  Google Scholar 

  2. 2.

    Tantillo DJ (2010) Chem Soc Rev 39:2847–2854

    Article  CAS  Google Scholar 

  3. 3.

    Grob CA, Winstein S (1952) Helv Chim Acta 35:782

    Article  CAS  Google Scholar 

  4. 4.

    Li W, LaCour TG, Fuchs PL (2002) J Am Chem Soc 124:4548–4549

    Article  CAS  Google Scholar 

  5. 5.

    Zhang X, Houk KN, Lin S, Danishefsky SJ (2003) J Am Chem Soc 125:5111

    Article  CAS  Google Scholar 

  6. 6.

    Denmark SE, Montgomery JI (2005) Angew Chemie—Int Ed 44:3732–3736

  7. 7.

    De Lemos E, Porée FH, Bourin A et al. (2008) Chem—A Eur J 14:11092–11112

  8. 8.

    Fernández I, Sierra MA, Mancheño MJ et al. (2008). Eur J Inorg Chem 2454–2462

  9. 9.

    Gutta P, Tantillo DJ (2006) J Am Chem Soc 128:6172–6179

    Article  CAS  Google Scholar 

  10. 10.

    Yu Y, Feng S, Feng D (2005) J Phys Chem A 109:3663–3668

    Article  CAS  Google Scholar 

  11. 11.

    Yu Y, Feng S (2006) J Phys Chem A 110:12463–12469

    Article  CAS  Google Scholar 

  12. 12.

    Yu Y, Feng S (2007) Int J Quantum Chem 107:105–115

    Article  CAS  Google Scholar 

  13. 13.

    Davis RL, Leverett CA, Romo D, Tantillo DJ (2011) J Org Chem 76:7167–7174

    Article  CAS  Google Scholar 

  14. 14.

    Fernández I, Sierra MA, Cossío FP (2006) Chem - A Eur J 12:6323–6330

    Article  Google Scholar 

  15. 15.

    Kudernac T, van der Molen SJ, van Wees BJ, Feringa BL (2006) Chem Commun (Camb) 3597–3599.

  16. 16.

    Matsuda K, Irie M (2000) Chem Lett 29:16–17

    Article  Google Scholar 

  17. 17.

    Al-Atar U, Fernandes R, Johnsen B et al. (2009) J Am Chem Soc 131:15966–15967

    Article  CAS  Google Scholar 

  18. 18.

    Okahata Y, Kimizuka N, Furlong N (2000) Colloids Surf A Physicochem Eng Asp 169:1–3

    Article  CAS  Google Scholar 

  19. 19.

    Woolley GA (2012) Nat Chem 4:75–77

    Article  CAS  Google Scholar 

  20. 20.

    Irie M (2000) Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  21. 21.

    Matsuda K, Matsuo M, Mizoguti S et al. (2002) J Phys Chem B 106:11218–11225

    Article  CAS  Google Scholar 

  22. 22.

    Datta SN, Pal AK, Hansda S, Latif IA (2012) J Phys Chem A 116:3304–3311

    Article  CAS  Google Scholar 

  23. 23.

    Bousquet D, Peltier C, Masselin C et al. (2012) Chem Phys Lett 542:13–18

    Article  CAS  Google Scholar 

  24. 24.

    Ikeda H, Kawabe A, Sakai A et al. (2009) Res Chem Intermed 35:893–908

    Article  CAS  Google Scholar 

  25. 25.

    Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09 revision A. 1. Gaussian Inc, Wallingford

  26. 26.

    Specowius V, Bendrath F, Winterberg M et al. (2012) Adv Synth Catal 354:1163–1169

    Article  CAS  Google Scholar 

  27. 27.

    Fernandez I, Frenking G (2007) Faraday Discuss 135:403

    Article  CAS  Google Scholar 

  28. 28.

    Frenking G, Cossio FP, Sierra MA, Fernandez I (2007). Eur J Org Chem 5410–5415.

  29. 29.

    Iaroshenko VO, Ostrovskyi D, Ayub K et al. (2013) Adv Synth Catal 355:576–588

    CAS  Google Scholar 

  30. 30.

    Salman GA, Nisa RU, Iaroshenko VO et al. (2012) Org Biomol Chem 10:9464–73

    Article  Google Scholar 

  31. 31.

    Ullah H, Shah A-HA, Ayub K, Bilal S (2013) J Phys Chem C 117:4069–4078

    Article  CAS  Google Scholar 

  32. 32.

    Javed I, Khurshid A, Arshad MN, Wang Y (2014) New J Chem 38:752

    Article  CAS  Google Scholar 

  33. 33.

    Lecea B, Arrieta A, Lopez X et al. (1995) J Am Chem Soc 117:12314–12321

    Article  CAS  Google Scholar 

  34. 34.

    Higashiguchi K, Matsuda K, Asano Y et al. (2004) Eur J Org Chem 91–97.

Download references


Authors acknowledge Higher Education Commission (HEC) of Pakistan (Grant No. 2469, 2981 and 3013), COMSATS Institute of Information Technology and University of the Punjab for financial and technical assistance.

Author information



Corresponding authors

Correspondence to Tariq Mahmood or Khurshid Ayub.

Ethics declarations

Ethical statements

The manuscript has not been submitted to more than one journal for simultaneous consideration.

The manuscript has not been published previously (partly or in full)

A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

No data have been fabricated or manipulated (including images) to support your conclusions

No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other’s work if quoted.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 123 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmood, T., Arshad, M., Gilani, M.A. et al. Dyotropic rearrangement of bridgehead substituents in closed dithienylethenes; conjugated verses non-conjugated analogues. J Mol Model 21, 321 (2015). https://doi.org/10.1007/s00894-015-2869-9

Download citation


  • Density functional theory
  • Halogenated dithienylethenes
  • Structure–property relationship
  • Type I dyotropic rearrangement