Empirical force field for cisplatin based on quantum dynamics data: case study of new parameterization scheme for coordination compounds

  • S. Yesylevskyy
  • Bruno Cardey
  • S. Kraszewski
  • Sarah Foley
  • Mironel Enescu
  • Antônio M. da SilvaJr.
  • Hélio F. Dos Santos
  • Christophe RamseyerEmail author
Original Paper


Parameterization of molecular complexes containing a metallic compound, such as cisplatin, is challenging due to the unconventional coordination nature of the bonds which involve platinum atoms. In this work, we develop a new methodology of parameterization for such compounds based on quantum dynamics (QD) calculations. We show that the coordination bonds and angles are more flexible than in normal covalent compounds. The influence of explicit solvent is also shown to be crucial to determine the flexibility of cisplatin in quantum dynamics simulations. Two empirical topologies of cisplatin were produced by fitting its atomic fluctuations against QD in vacuum and QD with explicit first solvation shell of water molecules respectively. A third topology built in a standard way from the static optimized structure was used for comparison. The later one leads to an excessively rigid molecule and exhibits much smaller fluctuations of the bonds and angles than QD reveals. It is shown that accounting for the high flexibility of cisplatin molecule is needed for adequate description of its first hydration shell. MD simulations with flexible QD-based topology also reveal a significant decrease of the barrier of passive diffusion of cisplatin accross the model lipid bilayer. These results confirm that flexibility of organometallic compounds is an important feature to be considered in classical molecular dynamics topologies. Proposed methodology based on QD simulations provides a systematic way of building such topologies.


Cisplatin Coordination compounds Molecular dynamics Parameterixation Quantum dynamics 

Supplementary material

894_2015_2812_MOESM1_ESM.pdf (3.1 mb)
ESM 1 (PDF 3163 kb) (17 kb)
ESM 2 (ZIP 17 KB)


  1. 1.
    Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320CrossRefGoogle Scholar
  2. 2.
    Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279CrossRefGoogle Scholar
  3. 3.
    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7(8):573–584CrossRefGoogle Scholar
  4. 4.
    Bourgaux C, Couvreur P (2014) Interactions of anticancer drugs with biomembranes: what can we learn from model membranes? J Control Release 190:127–138CrossRefGoogle Scholar
  5. 5.
    Nierzwicki L, Wieczor M, Censi V, Baginski M, Calucci L, Samaritani S, Czub J, Forte C (2015) Interaction of cisplatin and two potential antitumoral platinum(ii) complexes with a model lipid membrane: a combined NMR and MD study. Phys Chem Chem Phys 17(2):1458–1468CrossRefGoogle Scholar
  6. 6.
    Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin − DNA adducts. Chem Rev 99(9):2467–2498CrossRefGoogle Scholar
  7. 7.
    Carloni P, Sprik M, Andreoni W (2000) Key steps of the cis-platin-DNA interaction: density functional theory-based molecular dynamics simulations. J Phys Chem B 104(4):823–835CrossRefGoogle Scholar
  8. 8.
    Spiegel K, Rothlisberger U, Carloni P (2004) Cisplatin binding to DNA oligomers from hybrid car-parrinello/molecular dynamics simulations. J Phys Chem B 108(8):2699–2707CrossRefGoogle Scholar
  9. 9.
    Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan N, Chaney S (2007) Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastand cross-links reveal differences in their conformational dynamics. J Mol Biol 373(5):1123–1140CrossRefGoogle Scholar
  10. 10.
    Yao S, Plastaras JP, Marzilli LG (1994) A molecular mechanics AMBER-type force field for modeling platinum complexes of guanine derivatives. Inorg Chem 33(26):6061–6077CrossRefGoogle Scholar
  11. 11.
    Scheeff ED, Briggs JM, Howell SB (1999) Molecular modeling of the intrastrand guanine-guanine DNA adducts produced by cisplatin and oxaliplatin. Mol Pharmacol 56(3):633–643CrossRefGoogle Scholar
  12. 12.
    Dodoff N (2012) A DFT/ECP-small basis set modelling of cisplatin: molecular structure and vibrational spectrum. Comput Mol Biosci 2(2):35–44CrossRefGoogle Scholar
  13. 13.
    Melchior A, Tolazzi M, Martínez JM, Pappalardo R, Sanchez Marcos M (2015) Hydration of two cisplatin aqua-derivatives studied by quantum mechanics and molecular dynamics simulations. J Chem Theory Comput 11(4):1735–1744CrossRefGoogle Scholar
  14. 14.
    Lopes JF, de A Menezes VF, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) Monte Carlo simulation of cisplatin molecule in aqueous solution. J Phys Chem B 110(24):12047–12054CrossRefGoogle Scholar
  15. 15.
    Paschoal D, Marcial BL, Fedoce Lopes J, De Almeida WD, Dos Santos HF (2012) The role of the basis set and the level of quantum mechanical theory in the prediction of the structure and reactivity of cisplatin. J Comp Chem 33(29):2292–2302CrossRefGoogle Scholar
  16. 16.
    Seminario JM (1996) Calculation of intramolecular force fields from second-derivative tensors. Int J Quantum Chem 60(7):1271–1277CrossRefGoogle Scholar
  17. 17.
    Sousa da Silva A, Vranken W (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5(1):367CrossRefGoogle Scholar
  18. 18.
    Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) Ab initio molecular dynamics: propagating the density matrix with gaussian orbitals. III. Comparison with born–oppenheimer dynamics. J Chem Phys 117(19):8694–8704CrossRefGoogle Scholar
  19. 19.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093CrossRefGoogle Scholar
  20. 20.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  21. 21.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101CrossRefGoogle Scholar
  22. 22.
    Páll S, Hess B (2013) A flexible algorithm for calculating pair interactions on SIMD architectures. Comput Phys Commun 184(12):2641–2650CrossRefGoogle Scholar
  23. 23.
    Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comp Chem 26:1701–1718Google Scholar
  24. 24.
    Yesylevskyy SO (2012) Pteros: fast and easy to use open-source C++ library for molecular analysis. J Comput Chem 33(19):1632–1636CrossRefGoogle Scholar
  25. 25.
    Yesylevskyy SO (2015) Pteros 2.0: evolution of the fast parallel molecular analysis library for C++ and python. J Comput Chem 36(19):1480–1488CrossRefGoogle Scholar
  26. 26.
    Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8(8):2938–2948CrossRefGoogle Scholar
  27. 27.
    Frisch MJ et al. (2009) Gaussian 09. Gaussian, Inc, WallingfordGoogle Scholar
  28. 28.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012CrossRefGoogle Scholar
  29. 29.
    Hess B, Kutzner C, van der Spoel David, Lindhal E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Yesylevskyy
    • 1
  • Bruno Cardey
    • 3
  • S. Kraszewski
    • 2
  • Sarah Foley
    • 3
  • Mironel Enescu
    • 3
  • Antônio M. da SilvaJr.
    • 4
  • Hélio F. Dos Santos
    • 4
  • Christophe Ramseyer
    • 3
    Email author
  1. 1.Department of Physics of Biological SystemsInstitute of Physics of the National Academy of Sciences of UkraineKiev-28Ukraine
  2. 2.Department of Biomedical Engineering (W11/K7)Wroclaw University of TechnologyWroclawPoland
  3. 3.Laboratoire Chrono Environnement UMR CNRS 6249Université de Franche-ComtéBesançon CedexFrance
  4. 4.Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF)Campus UniversitárioJuiz de ForaBrazil

Personalised recommendations