RETRACTED ARTICLE: Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: a review

This article was retracted on 07 March 2019

Abstract

Recently, the experimental and computational chemists have been attracted widely to the click synthesis of 1,2,3 triazoles and their derivatives, mainly due to the fact that they are interesting from structural and mechanistic points of view. Moreover, catalyzed click have been well established as a successful strategy showing high regioselectivity and high yield for the synthesis of 1,2,3-triazoles. In this review, we try to highlight the recently reported computational assessments on the origins and predection of regioselectivity in the catalyzed click synthesis of triazoles from the mechanistic and thermodynamical points of view. In this light, density functional theory (DFT) calculations on the free energy profiles of azide-alkyne cycloaddition reactions have been underscored. The stereoelectronic features for the role of copper, ruthenium, and iridium as catalyst on regioselectivity of click reactions have also be discussed.

Computational origins for the regioselective behavior of 1,2,3 triazoles click synthesis

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 7
Fig. 7
Scheme 8
Fig. 8
Scheme 9
Scheme 10
Scheme 11
Fig. 9
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Fig. 10
Scheme 19
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Scheme 26
Fig. 21

References

  1. 1.

    Kathryn NK, Meghan ET, Drew LM (2008) J Chem Educ 85:102–109

    Google Scholar 

  2. 2.

    Huisgen R (1963) Angew Chem Int Ed 75:604–637

    Google Scholar 

  3. 3.

    Huisgen R, Heimgartner H (1984) Wiley, New York, vol. 1, pp 177–290

  4. 4.

    Pagliai F, Pirali T, Grosso ED, Brisco RD, Tron GC, Sorba G, Genazzani AA (2005) J Med Chem 48:5644–5647

    Google Scholar 

  5. 5.

    Pagliai F, Pirali T, Grosso ED, Brisco RD, Tron GC, Sorba G, Genazzani AA (2006) J Med Chem 49:467–470

    Google Scholar 

  6. 6.

    Lee T, Cho M, Ko SY, Youn HJ, Baek DJ, Cho WJ, Kang CY, Kim S (2007) J Med Chem 50:585–589

    Google Scholar 

  7. 7.

    Smith G, Glaser M, Perumal M, Nguyen QD, Shan B, Arstad E, Aboagye EO (2008) J Med Chem 51:8057–8067

    Google Scholar 

  8. 8.

    Yim CB, Dijkgraaf I, Merkx R, Versluis C, Eek A, Mulder GE, Rijkers DTS, Boerman OC, Liskamp RMJ (2010) J Med Chem 53:3944–3953

    Google Scholar 

  9. 9.

    Sumangala V, Poojary B, Chidananda N, Fernandes J, Kumari NS (2010) Arch Pharm Res 33:1911–1918

    Google Scholar 

  10. 10.

    Sangshetti JN, Shinde DB (2010) Bioorg Med Chem Lett 20:742–745

    Google Scholar 

  11. 11.

    Sangshetti JN, Nagawade RR, Shinde DB (2009) Bioorg Med Chem Lett 19:3564–3567

    Google Scholar 

  12. 12.

    Kategaonkar AH, Shinde PV, Pasale SK, Shingate BB, Shingare MS (2010) Eur J Med Chem 45:3142–3146

    Google Scholar 

  13. 13.

    Ferreira SB, Costa MS, Boechat N, Bezerra RJS, Genestra MS, Canto-Cavalheiro MM, Kover WB, Ferreira VF (2007) Eur J Med Chem 42:1388–1395

    Google Scholar 

  14. 14.

    Olomola TO, Klein R, Lobb KA, Sayed Y, Kaye PT (2010) Tetrahedron Lett 51:6325–6328

    Google Scholar 

  15. 15.

    Silva FD, Souza MCBV, Frugulhetti IIP, Castro HC, Souza SLD, Souza TML, Rodrigues DQ, Souza AMT, Abreu PA, Passamani F, Rodrigues CR, Ferreira VF (2009) Eur J Med Chem 44:373–383

    Google Scholar 

  16. 16.

    Huisgen R (1963) Angew Chem Int Ed Engl 2:565–598

    Google Scholar 

  17. 17.

    Moses JE, Moorhouse AD (2007) Chem Soc Rev 36:1249–1262

    Google Scholar 

  18. 18.

    Santoyo GF, Hernandez MF (2007) Top Heterocycl Chem 7:133–177

    Google Scholar 

  19. 19.

    Tron CG, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Med Res Rev 28:278–308

    Google Scholar 

  20. 20.

    Pedersen DS, Abell A (2011) Eur J Org Chem 2399–2411

  21. 21.

    Svobodova H, Noponen V, Kolehmainen E, Sievanen E (2012) RSC Adv 2:4985–5007

    Google Scholar 

  22. 22.

    Méndez F, Tamariz J, Geerlings PJ (1998) Phys Chem 102:6292–6296

    Google Scholar 

  23. 23.

    Becer CR, Hoogenboom R, Schubert US (2009) Angew Chem Int Ed 48:4900–4908

    Google Scholar 

  24. 24.

    Jewett JC, Bertozzi CR (2010) Chem Soc Rev 39:1272–1279

    Google Scholar 

  25. 25.

    Dervaux B, Du Prez FE (2012) Chem Sci 3:959–966

    Google Scholar 

  26. 26.

    Kayet A, Pathak T (2013) J Org Chem 78:9865–09875

    Google Scholar 

  27. 27.

    Dey S, Pathak T (2014) RSC Adv 4:9275–9278

    Google Scholar 

  28. 28.

    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem 113:2056–2075

    Google Scholar 

  29. 29.

    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004–2021

    Google Scholar 

  30. 30.

    Heravi MM, Khaghaninejad S, Mostofi M (2014) Adv Heterocycl Chem 112:1–50

    Google Scholar 

  31. 31.

    Heravi MM, Khaghaninejad S, Nazari N (2014) Adv Heterocycl Chem 112:183–234

    Google Scholar 

  32. 32.

    Khaghaninejad S, Heravi MM (2014) Adv Heterocycl Chem 111:95–146

    Google Scholar 

  33. 33.

    Heravi MM, Sadjadi S, Oskoole HA, Shoar RH, Bamoharram FF (2008) Catal Commun 9:470–474

    Google Scholar 

  34. 34.

    Heravi MM, Khorasani M, Derikvand F, Oskoole HA, Bamoharrarn FF (2007) Catal Commun 8:1886–1890

    Google Scholar 

  35. 35.

    Heravi MM, Alishiri T (2014) Adv Heterocycl Chem 113:1–66

    Google Scholar 

  36. 36.

    Heravi MM, Talaei B (2014) Adv Heterocycl Chem 113:143–244

    Google Scholar 

  37. 37.

    Heravi MM, Fazeli A, Oskooie HA, Beheshtiha YS, Valizadeh H (2012) Synlett 20:2927–2930

    Google Scholar 

  38. 38.

    Heravi MM, Oskooie HA, Karimi N (2011) Chin Chem Lett 22:1059–1062

    Google Scholar 

  39. 39.

    Fazeli A, Oskooie HA, Beheshtiha YS, Heravi MM, Valizadeh H (2013) Lett Org Chem 10:738–743

    Google Scholar 

  40. 40.

    Fazeli A, Oskooie HA, Beheshtiha YS, Heravi MM (2013) Chem Sci 68:391–396

    Google Scholar 

  41. 41.

    Hashemi E, Beheshtiha YS, Heravi MM, Ahmadi S (2014) Transit Met Chem 39:593–601

    Google Scholar 

  42. 42.

    Heravi MM, Zadsirjan V (2014) Tetrahedron Asymmetry 25:1061–1090

    Google Scholar 

  43. 43.

    Heravi MM, Hamidi H, Zadsirjan V (2014) Curr Org Synth 11:647–675

    Google Scholar 

  44. 44.

    Heravi MM, Hajiabbasi P (2014) Mol Divers 18:411–439

    Google Scholar 

  45. 45.

    Heravi MM, Hashemi E, Nazari N (2014) Mol Divers 18:441–472

    Google Scholar 

  46. 46.

    Heravi MM, Hashemi E, Azimian F (2014) Tetrahedron 70:7–21

    Google Scholar 

  47. 47.

    Heravi MM, Hajiabbasi P (2012) Monatsh Chem 143:1575–1592

    Google Scholar 

  48. 48.

    Heravi MM, Asadi S (2012) Tetrahedron Asymmetry 23:1431–1465

    Google Scholar 

  49. 49.

    Heravi MM, Hashemi E (2012) Tetrahedron 68:9145–9178

    Google Scholar 

  50. 50.

    Heravi MM, Hashemi E (2012) Monatsh Chem 43:861–880

    Google Scholar 

  51. 51.

    Heravi MM, Fazeli A (2010) Heterocyclics 81:1979–2026

    Google Scholar 

  52. 52.

    Heravi MM, Hashemi E, Beheshtiha YS, Ahmadi S, Hosseinnejad T (2014) J Mol Catal A 394:74–82

    Google Scholar 

  53. 53.

    Mirsafaei R, Heravi MM, Ahmadi SH, Moslemin MH, Hosseinnejad T (2015) J Mol Catal A 402:100–108

    Google Scholar 

  54. 54.

    Hosseinnejad T, Heravi MM, Firouzi R (2013) J Mol Model 19:951–961

    Google Scholar 

  55. 55.

    Bock VD, Hiemstra H, van Maarseveen JH (2006) Eur J Org Chem 51–68

  56. 56.

    Geittner J, Huisgen R, Reissig HU (1978) Heterocycles 11:109–120

    Google Scholar 

  57. 57.

    Huisgen R, Reissig HU, Huber H, Voss S (1979) Tetrahedron Lett 20:2987–2990

    Google Scholar 

  58. 58.

    Bihlmaier W, Geittner J, Huisgen R, Reissig HU (1978) Heterocycles 10:147–152

    Google Scholar 

  59. 59.

    Huisgen R, Scheer W, Huber H (1967) J Am Chem Soc 89:1753–1755

    Google Scholar 

  60. 60.

    Dahmen A, Hamberger H, Huisgen R, Markowski V (1971) J Chem Soc 1192–1194

  61. 61.

    Diels O, Alder K (1928) Chem Eur J 460:98–122

    Google Scholar 

  62. 62.

    Hake R, McLendon G, Corin A, Holzschu D (1991) Chem Ber 124:238–248

    Google Scholar 

  63. 63.

    Hake R, McLendon G, Corin A, Holzschu D (1973) J Am Chem Soc 95:4902–4909

    Google Scholar 

  64. 64.

    Carey FA, Sundberg RJ (2007) Advanced organic chemistry. Springer 836–850

  65. 65.

    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–22599

    Google Scholar 

  66. 66.

    Caramella P, Houk KN (1976) J Am Chem Soc 98:6397–6399

    Google Scholar 

  67. 67.

    Caramella P, Gandour RW, Hall JA, Deville CG, Houk KN (1977) J Am Chem Soc 99:385–392

    Google Scholar 

  68. 68.

    Suga H, Ebiura Y, Fukushima K, Kakehi A, Baba T (2005) J Org Chem 70:10782–10791

    Google Scholar 

  69. 69.

    Storr TE, Baumann CG, Thatcher RJ, De Ornellas S, Whitwood AC, Fairlamb IJS (2009) Organomet Chem 74:5810–5821

    Google Scholar 

  70. 70.

    Sokolova NV, Nenajdenko VG (2013) RSC Adv 3:16212–16242

    Google Scholar 

  71. 71.

    McNulty J, Keskar K, Vemula R (2011) Chem Euro J 17:14727–14730

    Google Scholar 

  72. 72.

    McNulty J, Keskar K (2012) Eur J Org Chem 2012:5462–5470

    Google Scholar 

  73. 73.

    Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057–3064

    Google Scholar 

  74. 74.

    Appukkuttan P, Dehaen W, Fokin VV, Eycken E (2004) Org Lett 6:4223–4225

    Google Scholar 

  75. 75.

    Kolb HC, Sharpless KB (2003) Drug Discov Angew Chem Int Ed 8:1128–1137

    Google Scholar 

  76. 76.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Google Scholar 

  77. 77.

    Bandyopadhyay D (2008) Appl Phys Jpn 104:084308–084315

    Google Scholar 

  78. 78.

    Bandyopadhyay D, Sen P (2010) J Phys Chem A 114:1835–1842

    Google Scholar 

  79. 79.

    Bandyopadhyay D (2012) J Mol Model 18:3887–3902

    Google Scholar 

  80. 80.

    Trivedi R, Dhaka K, Bandyopadhyay D (2014) RSC Adv 4:64825–64834

    Google Scholar 

  81. 81.

    Becke AD (1993) J Chem Phys 98:5648–5652

    Google Scholar 

  82. 82.

    Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Google Scholar 

  83. 83.

    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194108

    Google Scholar 

  84. 84.

    Gonzales C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Google Scholar 

  85. 85.

    Dolbier WR Jr, Koroniak H, Houk KN, Sheu C (1996) Acc Chem Res 29:471–477

    Google Scholar 

  86. 86.

    Kirmse W, Rondan NG, Houk KN (1984) J Am Chem Soc 106:7989–7991

    Google Scholar 

  87. 87.

    Alabugin IV (2000) J Org Chem 65:3910–3919

    Google Scholar 

  88. 88.

    Alabugin IV, Manoharan M, Kovalenko SV (2002) Org Lett 4:1119–1122

    Google Scholar 

  89. 89.

    Alabugin IV, Manoharan M (2003) J Phys Chem 107:3363–3371

    Google Scholar 

  90. 90.

    Alabugin IV, Manoharan M, Zeidan TA (2003) J Am Chem Soc 125:14014–14031

    Google Scholar 

  91. 91.

    Alabugin IV, Manoharan M (2004) J Org Chem 69:9011–9024

    Google Scholar 

  92. 92.

    Zeidan TA, Kovalenko SV, Manoharan M, Clark RJ, Ghiviriga I, Alabugin IV (2005) J Am Chem Soc 127:4270–4285

    Google Scholar 

  93. 93.

    Alabugin IV, Manoharan M (2003) J Am Chem Soc 125:4495–4509

    Google Scholar 

  94. 94.

    Breiner B, Schlatterer JC, Kovalenko SV, Greenbaum NL, Alabugin IV (2007) Proc Natl Acad Sci U S A 104:13016–13021

    Google Scholar 

  95. 95.

    Kamijo S, Dudley GB (2005) J Am Chem Soc 127:5028–5029

    Google Scholar 

  96. 96.

    Kamijo S, Dudley GB (2006) J Am Chem Soc 128:6499–6507

    Google Scholar 

  97. 97.

    Tummatorn J, Dudley GB (2008) J Am Chem Soc 130:5050–5051

    Google Scholar 

  98. 98.

    Jones DM, Lisboa MP, Kamijo S, Dudley GB (2010) J Org Chem 75:3260–3267

    Google Scholar 

  99. 99.

    Tummatorn J, Dudley GB (2011) Org Lett 13:158–160

    Google Scholar 

  100. 100.

    Tummatorn J, Dudley GB (2011) Org Lett 13:1572–1575

    Google Scholar 

  101. 101.

    Hayden AE, Houk KN (2009) J Am Chem Soc 131:4084–4089

    Google Scholar 

  102. 102.

    Jones GO, Houk KN (2008) J Org Chem 73:1333–1342

    Google Scholar 

  103. 103.

    Xu L, Doubleday CE, Houk KN (2009) Angew Chem Int Ed 48:2746–2748

    Google Scholar 

  104. 104.

    Lan Y, Houk KN (2010) J Am Chem Soc 132:17921–17927

    Google Scholar 

  105. 105.

    Krenske EH, Houk KN, Holmes AB, Thompson J (2011) Tetrahedron Lett 52:2181–2184

    Google Scholar 

  106. 106.

    Shevchenko NE, Gold B, Bonus N, Dudley GB, Alabugin IV (2012) Org Chem 77:75–89

    Google Scholar 

  107. 107.

    Ess DH, Houk KN (2007) J Am Chem Soc 129:10646–10647

    Google Scholar 

  108. 108.

    Ess DH, Jones GO, Houk KN (2008) Org Lett 10:1633–1636

    Google Scholar 

  109. 109.

    Debashis S, Santu D, Tanmaya P, Bishwajit G (2014) Org Lett 16:2100–2103

    Google Scholar 

  110. 110.

    Ess DH, Schoenebeck F, Jones GO, Houk KN (2009) J Am Chem Soc 131:8121–8133

    Google Scholar 

  111. 111.

    Chandra AK, Uchimaru T, Nguyen MT (1999) J Chem Soc Perkin Trans 2:2117–2121

    Google Scholar 

  112. 112.

    Hager C, Miethchen R, Reinke H (2000) J Fluor Chem 104:135–142

    Google Scholar 

  113. 113.

    Dey S, Datta D, Pathak T (2011) Synlett 17:2521–2524

    Google Scholar 

  114. 114.

    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  115. 115.

    Klicić JJ, Friesner RA (1999) J Phys Chem 103:1276–1282

    Google Scholar 

  116. 116.

    Karthik Kumar K, Mahesh Kumar R, Subramanian V, Mohan Das T (2010) Carbohydr Res 345:2297–2304

    Google Scholar 

  117. 117.

    Sustmann R (1971) Tetrahedron Lett 29:2717–2720

    Google Scholar 

  118. 118.

    Ess DH, Houk KN (2008) J Am Chem Soc 130:10187–10193

    Google Scholar 

  119. 119.

    Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Google Scholar 

  120. 120.

    Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin V (2008) J Am Chem Soc 130:8923–8930

    Google Scholar 

  121. 121.

    Meldal M, Tornøe CW (2008) Chem Rev 108:2952–3015

    Google Scholar 

  122. 122.

    Sirisha B, Narsaiah B, Yakaiah T, Gayatri G, Narahari Sastry G, Raghu Prasad M, Raghuram Rao A (2010) Eur J Med Chem 45:1739–1745

    Google Scholar 

  123. 123.

    Mishra JK, Panda G, Rao JS, Sastry GN (2006) Tetrahedron Lett 47:3357–3360

    Google Scholar 

  124. 124.

    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Google Scholar 

  125. 125.

    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Google Scholar 

  126. 126.

    Michiel van Rhee A, Siddiqi SM, Melman N, Shi D, Padgett WL, Daly JW, Jacobson KA (1996) J Med Chem 39:398–406

    Google Scholar 

  127. 127.

    Zhong P, Guo SR (2004) Chin J Chem 22:1183–1186

    Google Scholar 

  128. 128.

    Romagnoli R, Baraldi PG, Moorman AR, Iaconinoto MA, Carrion MD, Cara CL, Tabrizi MA, Preti D, Fruttarolo F, Baker SP, Varani K, Borea PA (2006) Bioorg Med Chem Lett 16:5530–5533

    Google Scholar 

  129. 129.

    Gheorghe A, Matsuno A, Reiser O (2006) Adv Synth Catal 348:1016–1020

    Google Scholar 

  130. 130.

    Lewis WG, Magallon FG, Fokin VV, Finn MG (2004) J Am Chem Soc 126:9152–9153

    Google Scholar 

  131. 131.

    Straub BF (2007) Chem Commun 25:3868–3870

    Google Scholar 

  132. 132.

    Díez-González S, Correa A, Cavallo L, Nolan SP (2006) Chem Eur J 12:7558–7564

    Google Scholar 

  133. 133.

    Candelon N, Lastécouères D, Diallo AK, Aranzaes JR, Astruc D, Vincent JM (2008) Chem Commun 14:741–743

    Google Scholar 

  134. 134.

    Kuijpers BHM, Dijkmans GCT, Groothuys S, Quaedflieg PJLM, Blaauw RH, van Delft FL, Rutjes FPJT (2005) Synlett 20:3059–3062

    Google Scholar 

  135. 135.

    Berg R, Straub BF, Beilstein J (2013) Org Chem 9:2715–2750

    Google Scholar 

  136. 136.

    Rodionov VO, Presolski SI, Gardinier S, Lim YH, Finn MG (2007) J Am Chem Soc 129:12696–12704

    Google Scholar 

  137. 137.

    Rodionov VO, Presolski SI, Díaz Díaz D, Fokin VV, Finn MG (2007) J Am Chem Soc 129:12705–12712

    Google Scholar 

  138. 138.

    Buckley BR, Dann SE, Heaney H (2010) Chem Eur J 16:6278–6284

    Google Scholar 

  139. 139.

    Straub BF (2007) Chem Commun 37:3868–3870

    Google Scholar 

  140. 140.

    Zhou Y, Lecourt T, Micouin L (2010) Angew Chem Int Ed 49:2607–2610

    Google Scholar 

  141. 141.

    Ahlrichs R, Weigend F (2005) Phys Chem Chem Phys 7:3297–3305

    Google Scholar 

  142. 142.

    Huber C, Schaefer A, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Google Scholar 

  143. 143.

    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Google Scholar 

  144. 144.

    Cantillo D, Ávalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC (2011) Org Biomol Chem 9:2952–2958

    Google Scholar 

  145. 145.

    Cadiot P, Chodkiewicz W, Viehe HG (ed) (1969) Dekker M, New York, pp 597–647

  146. 146.

    Chodkiewicz W (1957) Ann Chim Paris 2:819–869

    Google Scholar 

  147. 147.

    Alami M, Ferri F (1996) Tetrahedron Lett 37:2763–2766

    Google Scholar 

  148. 148.

    Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem Int Ed 48:8018–8021

    Google Scholar 

  149. 149.

    Roux B, Simonson T (1999) Biophys Chem 78:1–20

    Google Scholar 

  150. 150.

    Ahlquist M, Fokin VV (2007) Organomet Chem 26:4389–4391

    Google Scholar 

  151. 151.

    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Google Scholar 

  152. 152.

    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Google Scholar 

  153. 153.

    Fokin VV, Ding K, Dai LX (2012) Wiley-VCH Verlag GmbH & Co. KGaA 43, pp 247–277

  154. 154.

    Fokin VV, Hein JE (2010) Chem Soc Rev 39:1302–1315

    Google Scholar 

  155. 155.

    Naota T, Takaya H, Murahashi SI (1998) Chem Rev 98:2599–2660

    Google Scholar 

  156. 156.

    Bruneau C, Dixneuf PH (1999) Acc Chem Res 32:311–323

    Google Scholar 

  157. 157.

    Trost BM, Toste FD, Pinkerton AB (2001) Chem Rev 101:2067–2096

    Google Scholar 

  158. 158.

    Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) J Am Chem Soc 127:15998–15999

    Google Scholar 

  159. 159.

    Hou DR, Kuan TC, Li YK, Lee R, Huang KW (2010) Tetrahedron 66:9415–9420

    Google Scholar 

  160. 160.

    Lamberti M, Fortman GC, Poater A, Broggi J, Slawin AMZ, Cavallo L, Nolan SP (2012) Organomet Chem 31:756–767

    Google Scholar 

  161. 161.

    Majireck MM, Weinreb SM (2006) J Org Chem 71:8680–8683

    Google Scholar 

  162. 162.

    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Google Scholar 

  163. 163.

    Niu SQ, Hall MB (2000) Chem Rev 100:353–406

    Google Scholar 

  164. 164.

    Diedenhofen M, Wagener T, Frenking G, Marcel Dekker (2001) Comput Organomet Chem 69–122

  165. 165.

    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem 109:4388–4403

    Google Scholar 

  166. 166.

    Neese F (2003) J Chem Phys 118:3939–3948

    Google Scholar 

  167. 167.

    Boz E, Tuzun NS (2013) Organomet Chem 724:167–176

    Google Scholar 

  168. 168.

    Ding S, Jia G, Sun J (2014) Angew Chem Int Ed 53:1877–1880

    Google Scholar 

  169. 169.

    Qiong L, Guochen J, Jianwei S, Zhenyang L (2014) J Org Chem 79:11970–11980

    Google Scholar 

  170. 170.

    Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Google Scholar 

  171. 171.

    Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan YB, Webster CE, Hall MB (2005) J Am Chem Soc 127:2538–2552

    Google Scholar 

  172. 172.

    Wei CS, Jiménez-Hoyos CA, Videa MF, Hartwig JF, Hall MB (2010) J Am Chem Soc 132:3078–3091

    Google Scholar 

  173. 173.

    Lam KC, Lam WH, Lin Z, Marder TB, Norman NC (2004) Inorg Chem 43:2541–2547

    Google Scholar 

  174. 174.

    Rasolofonjatovo E, Theeramunkong S, Bouriaud A, Kolodych S, Chaumontet M, Taran F (2013) Org Lett 15:4698–4701

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support from the research council of Alzahra University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majid M. Heravi.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00894-019-3978-7.

The editor has retracted this article because it contains sections that substantially overlap with a number of previously published sources without appropriate citation and acknowledgment. Tayebeh Hosseinnejad and Majid M. Heravi do not agree to this retraction. Bahareh Fattahi could not be reached for comment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseinnejad, T., Fattahi, B. & Heravi, M.M. RETRACTED ARTICLE: Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: a review. J Mol Model 21, 264 (2015). https://doi.org/10.1007/s00894-015-2810-2

Download citation

Keywords

  • Azide-alkyne cycloaddition
  • Catalyzed click reaction
  • Density functional theory
  • Free energy reaction profile
  • Regioselectivity
  • Stereoelectronic effect
  • 1,2,3 triazole