Journal of Molecular Modeling

, 21:246 | Cite as

DFT study of 1-butyl-3-methylimidazolium salicylate: a third-generation ionic liquid

  • Stevan ArmakovićEmail author
  • Sanja J. Armaković
  • Milan Vraneš
  • Aleksandar Tot
  • Slobodan Gadžurić
Original Paper


A detailed theoretical investigation of the third-generation ionic liquid (IL) 1-butyl-3-methylimidazolium salicylate ([BMIM][Sal]), performed within the framework of density functional theory (DFT), is presented in this paper. The B3LYP-D3, M06-2X, and M06-2X-D3 functionals were used to obtain the equilibrium geometries of the two ions [BMIM]+ and [Sal]. It is shown that the equilibrium ion geometries obtained with the dispersion-corrected B3LYP functional are very close to the ion geometries obtained with the M06-2X and M06-2X-D3 functionals. Global reactivity was assessed using molecular orbital theory and quantum molecular descriptors. Molecular electrostatic potential (MEP) surfaces and average local ionization energy (ALIE) surfaces were created in order to elucidate the charge distribution and reactivity of the investigated IL. Ion-pair binding energies were calculated with all three functionals, and the results confirmed the presence of a strong electrostatic interaction between the ions, while further insight into the interactions between the two ions was obtained by analyzing noncovalent interactions based on the reduced density gradient (RDG) surface, which revealed a total of nine interactions between the ions. Finally, the aromaticity of each ion was investigated by calculating the nucleus-independent chemical shift (NICS) parameter, which indicated that significant changes in the charge delocalization on each ion occur when the two ions interact.


DFT Ionic liquids BMIM salicylate MEP ALIE RDG NICS 



This work was financially supported by the Ministry of Education, Science and Technological Development of Serbia, grant numbers ON171039, TR34019, and ON172012.


  1. 1.
    Song Z, Wang H, Xing L (2009) Density functional theory study of the ionic liquid [emim] OH and complexes [emim] OH (H2O)n (n = 1, 2). J Solut Chem 38:1139–1154Google Scholar
  2. 2.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRefGoogle Scholar
  3. 3.
    Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68:351–356CrossRefGoogle Scholar
  4. 4.
    Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039Google Scholar
  5. 5.
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:5300–5308Google Scholar
  6. 6.
    Pérez-Salado Kamps Á, Tuma D, Xia J, Maurer G (2003) Solubility of CO2 in the ionic liquid [bmim][PF6]. J Chem Eng Data 48:746–749Google Scholar
  7. 7.
    Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961CrossRefGoogle Scholar
  8. 8.
    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250CrossRefGoogle Scholar
  9. 9.
    Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793Google Scholar
  10. 10.
    Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. Electrochem Soc Interface 16:42–49Google Scholar
  11. 11.
    Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 80:2262–2269CrossRefGoogle Scholar
  12. 12.
    Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436CrossRefGoogle Scholar
  13. 13.
    Praczyk T, Kardasz P, Jakubiak E, Syguda A, Materna K, Pernak J (2012) Herbicidal ionic liquids with 2,4-D. Weed Sci 60:189–192Google Scholar
  14. 14.
    Pernak J, Niemczak M, Materna K, Marcinkowska K, Praczyk T (2013) Ionic liquids as herbicides and plant growth regulators. Tetrahedron 69:4665–4669CrossRefGoogle Scholar
  15. 15.
    Chen P-Y, Chang Y-T (2012) Voltammetric study and electrodeposition of copper in 1-butyl-3-methylimidazolium salicylate ionic liquid. Electrochim Acta 75:339–346CrossRefGoogle Scholar
  16. 16.
    Campbell PS, Yang M, Pitz D, Cybinska J, Mudring AV (2014) Highly luminescent and color‐tunable salicylate ionic liquids. Chemistry 20:4704–4712Google Scholar
  17. 17.
    Kobrak MN (2006) Characterization of the solvation dynamics of an ionic liquid via molecular dynamics simulation. J Chem Phys 125:064502CrossRefGoogle Scholar
  18. 18.
    Ishida T (2013) The dynamical properties on ionic liquids: insights from molecular dynamics study. INTECH doi: 10.5772/51652
  19. 19.
    Canongia Lopes JN, Pádua AA (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335CrossRefGoogle Scholar
  20. 20.
    Bhargava B, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127: 114510Google Scholar
  21. 21.
    Znamenskiy V, Kobrak MN (2004) Molecular dynamics study of polarity in room-temperature ionic liquids. J Phys Chem B 108:1072–1079CrossRefGoogle Scholar
  22. 22.
    Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142Google Scholar
  23. 23.
    Schrödinger, LLC (2015) Jaguar, version 8.8. Schrödinger, LLC, New YorkGoogle Scholar
  24. 24.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104Google Scholar
  25. 25.
    Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228Google Scholar
  26. 26.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241Google Scholar
  27. 27.
    Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc–rare-gas dimers. J Phys Chem A 110:5121–5129Google Scholar
  28. 28.
    Grimme S (2012) Supramolecular binding thermodynamics by dispersion‐corrected density functional theory. Chemistry 18:9955–9964Google Scholar
  29. 29.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167CrossRefGoogle Scholar
  30. 30.
    Sandhiya L, Senthilkumar K (2014) A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors. J Mol Struct 1074:157–167Google Scholar
  31. 31.
    Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632CrossRefGoogle Scholar
  32. 32.
    Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  33. 33.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity. Can J Chem 68:1440–1443CrossRefGoogle Scholar
  34. 34.
    Politzer P, Abu‐Awwad F, Murray JS (1998) Comparison of density functional and Hartree–Fock average local ionization energies on molecular surfaces. Int J Quantum Chem 69:607–613CrossRefGoogle Scholar
  35. 35.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  36. 36.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  37. 37.
    Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Organic Chem 54:1423–1430CrossRefGoogle Scholar
  38. 38.
    Kavitha E, Sundaraganesan N, Sebastian S, Kurt M (2010) Molecular structure, anharmonic vibrational frequencies and NBO analysis of naphthalene acetic acid by density functional theory calculations. Spectrochim Acta A 77:612–619Google Scholar
  39. 39.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  40. 40.
    Chandrakumar K, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666CrossRefGoogle Scholar
  41. 41.
    Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Ann Rep Sec Phys Chem 105:13–39CrossRefGoogle Scholar
  42. 42.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  43. 43.
    Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  44. 44.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  45. 45.
    Chattaraj PK, Roy DR (2007) Update 1 of: electrophilicity index. Chem Rev 107:PR46–PR74CrossRefGoogle Scholar
  46. 46.
    Armaković S, Armaković SJ, Šetrajčić JP (2013) Hydrogen storage properties of sumanene. Int J Hydrog Energy 38:12190–12198CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Scanlon L, Rottmayer M, Balbuena P (2006) Computational investigation of adsorption of molecular hydrogen on lithium-doped corannulene. J Phys Chem B 110:22532–22541CrossRefGoogle Scholar
  48. 48.
    Denis PA (2008) Investigation of H2 physisorption on corannulene (C20H10), tetraindenocorannulene (C44H18), pentaindenocorannulene (C50H20), C60, and their nitrogen derivatives. J Phys Chem C 112:2791–2796Google Scholar
  49. 49.
    Scanlon L, Balbuena P, Zhang Y, Sandi G, Back C, Feld W, Mack J, Rottmayer M, Riepenhoff J (2006) Investigation of corannulene for molecular hydrogen storage via computational chemistry and experimentation. J Phys Chem B 110:7688–7694CrossRefGoogle Scholar
  50. 50.
    Scanlon L, Feld W, Balbuena P, Sandi G, Duan X, Underwood K, Hunter N, Mack J, Rottmayer M, Tsao M (2009) Hydrogen storage based on physisorption. J Phys Chem B 113:4708–4717CrossRefGoogle Scholar
  51. 51.
    Zhu X, Lu Y, Peng C, Hu J, Liu H, Hu Y (2011) Halogen bonding interactions between brominated ion pairs and CO2 molecules: implications for design of new and efficient ionic liquids for CO2 absorption. J Phys Chem B 115:3949–3958Google Scholar
  52. 52.
    Ulahannan RT, Panicker CY, Varghese HT, Musiol R, Jampilek J, Van Alsenoy C, War JA, Srivastava S (2015) Molecular structure, FT-IR, FT-Raman, NBO, HOMO and LUMO, MEP, NLO and molecular docking study of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid. Spectrochimica Acta A 51:184–197Google Scholar
  53. 53.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) Active components of frequently used β-blockers from the aspect of computational study. J Mol Model 18:4491–4501CrossRefGoogle Scholar
  54. 54.
    Rosline Sebastian Sr SH, Attia MI, Almutairi MS, El-Emam AA, Panicker CY, Van Alsenoy C (2014) FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione, a potential bioactive agent. Spectrochim Acta A 132:295–304Google Scholar
  55. 55.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2013) Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study. Chem Phys Lett 578:156–161CrossRefGoogle Scholar
  56. 56.
    Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Average local ionization energies computed on the surfaces of some strained molecules. Int J Quantum Chem 38:645–653CrossRefGoogle Scholar
  57. 57.
    Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD (2010) In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys Chem Chem Phys 12:2011–2017CrossRefGoogle Scholar
  58. 58.
    Shamshina JL, Barber PS, Rogers RD (2013) Ionic liquids in drug delivery. Expert Opin Drug Deliv 10:1367–1381Google Scholar
  59. 59.
    Rainsford KD (2013) Aspirin and the salicylates, Elsevier, AmsterdamGoogle Scholar
  60. 60.
    Roohi H, Khyrkhah S (2013) Ion-pairs formed in [Mim+][N(CN)2 ] ionic liquid: structures, binding energies, NMR SSCCs, volumetric, thermodynamic and topological properties. J Mol Liq 177:119–128Google Scholar
  61. 61.
    Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) Magnitude and directionality of interaction in ion pairs of ionic liquids: relationship with ionic conductivity. J Phys Chem B 109:16474–16481CrossRefGoogle Scholar
  62. 62.
    Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, MacFarlane DR (2007) Liquids intermediate between “molecular” and “ionic” liquids: liquid ion pairs? Chem Commun 3817–3819Google Scholar
  63. 63.
    Bernard UL, Izgorodina EI, MacFarlane DR (2010) New insights into the relationship between ion-pair binding energy and thermodynamic and transport properties of ionic liquids. J Phys Chem C 114:20472–20478Google Scholar
  64. 64.
    Roohi H, Salehi R (2011) Molecular interactions in methylimidazolium tetrafluoroborate ionic liquid ([Mim+][BF4 ]): structures, binding energies, topological properties and NMR one- and two bonds spin–spin coupling constants. J Mol Liq 161:63–71Google Scholar
  65. 65.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566Google Scholar
  66. 66.
    Otero-de-la-Roza A, Johnson ER, Contreras-Garcia J (2012) Revealing non-covalent interactions in solids: NCI plots revisited. Phys Chem Chem Phys 14:12165–12172CrossRefGoogle Scholar
  67. 67.
    Schleyer PR, Jiao H, Hommes NJE, Malkin VG, Malkina OL (1997) An evaluation of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar
  68. 68.
    Schleyer PR, Manoharan M, Jiao H, Stahl F (2001) The acenes: is there a relationship between aromatic stabilization and reactivity? Org Lett 3:3643–3646CrossRefGoogle Scholar
  69. 69.
    Corminboeuf C, Heine T, Seifert G, von Ragué Schleyer P, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes: interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276Google Scholar
  70. 70.
    Cao Y, Beachy MD, Braden DA, Morrill L, Ringnalda MN, Friesner RA (2005) Nuclear-magnetic-resonance shielding constants calculated by pseudospectral methods. J Chem Phys 122:224116CrossRefGoogle Scholar
  71. 71.
    Cyrañski MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) To what extent can aromaticity be defined uniquely? J Organic Chem 67:1333–1338Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stevan Armaković
    • 1
    Email author
  • Sanja J. Armaković
    • 2
  • Milan Vraneš
    • 2
  • Aleksandar Tot
    • 2
  • Slobodan Gadžurić
    • 2
  1. 1.Faculty of Sciences, Department of PhysicsUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental ProtectionUniversity of Novi SadNovi SadSerbia

Personalised recommendations