Effect of donor strength of extended alkyl auxiliary groups on optoelectronic and charge transport properties of novel naphtha[2,1-b:6,5-b′]difuran derivatives: simple yet effective strategy

  • Aijaz Rasool Chaudhry
  • R. Ahmed
  • Ahmad Irfan
  • A. Shaari
  • Ahmad Radzi Mat Isa
  • Shabbir Muhammad
  • Abdullah G. Al-Sehemi
Original Paper

Abstract

The present study spotlights the designing of new derivatives of 2,7-bis (4-octylphenyl) naphtho [2,1-b:6,5-b′] difuran (C8-DPNDF) by substituting the alkyl groups (methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups) at para position. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods are employed to optimize the molecular structures in ground and first excited states, respectively. Several electro-optical properties including hole/electron reorganization energies (λhe), electron affinities (EAs), ionization potentials (IPs), molecular electrostatic potentials (MEP), and frontier molecular orbitals (FMOs) have been evaluated. Furthermore their transfer integrals and intrinsic mobilities values have also been calculated. From this study, it is found that hole mobility of octyl containing derivative is raised to 4.69 cm2 V−1 s−1. Moreover with attaching octyl group, hole transfer integral values have also been enhanced in newly designed derivatives. The balanced hole and electron reorganization energies, and improved transfer integrals lead to enhanced mobility in derivatives with octyl group, highlighting them as an efficient hole transfer material. Unlike the other electro-optical properties, the intrinsic hole mobility has increased because of transfer integral values of octyl containing derivative C8-DPNDF due to the dense and close crystal packing of C8-DPNDF. However, photostability of furan-based materials has not changed by increasing length of extended alkyl chain. Thus our present investigation highlights the importance of alkyl auxiliary groups that are often neglected/replaced with simple methyl group to save computation costs.

Graphical Abstract

The hole and electron reorganization energies of naphtho[2,1-b:6,5-b']difuran derivatives

Keywords

Alkyl auxiliary groups Frontier molecular orbitals Mobility Molecular electrostatic potentials Optoelectronic 

Supplementary material

894_2015_2743_MOESM1_ESM.docx (313 kb)
Fig. S1(DOCX 312 kb)

References

  1. 1.
    Boto A, Alvarez L (2011) Furan and its derivatives heterocycles in natural product synthesis 97–152Google Scholar
  2. 2.
    Majumdar KC, Chattopadhyay SK (2011) Heterocycles in natural product synthesis. Wiley, New YorkGoogle Scholar
  3. 3.
    Bunz UH (2010) α‐oligofurans: molecules without a twist. Angew Chem Int Ed 49(30):5037–5040CrossRefGoogle Scholar
  4. 4.
    Brown RC (2005) Developments in furan synthese. Angew Chem Int Ed 44(6):850–852CrossRefGoogle Scholar
  5. 5.
    Gidron O, Diskin-Posner Y, Bendikov M (2010) α-oligofurans. J Am Chem Soc 132(7):2148–2150CrossRefGoogle Scholar
  6. 6.
    Limpricht H (1870) Ueber das Tetraphenol, C4H4O. Ber Dtsch Chem Ges 3(1):90–91CrossRefGoogle Scholar
  7. 7.
    Joule JA, Mills K (2013) Heterocyclic chemistry. Wiley, New YorkGoogle Scholar
  8. 8.
    Cyrañski MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) To what extent can aromaticity be defined uniquely? J Org Chem 67(4):1333–1338Google Scholar
  9. 9.
    Stanger A (2005) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71(3):883–893Google Scholar
  10. 10.
    Gidron O, Bendikov M (2014) α‐oligofurans: an emerging class of conjugated oligomers for organic electronics. Angew Chem Int Ed 53(10):2546–2555CrossRefGoogle Scholar
  11. 11.
    Belgacem MN, Gandini A (2011) Monomers, polymers and composites from renewable resources. Elsevier, DordrechtGoogle Scholar
  12. 12.
    Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24):9491–9504CrossRefGoogle Scholar
  13. 13.
    Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131(5):1979–1985CrossRefGoogle Scholar
  14. 14.
    Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061–1083CrossRefGoogle Scholar
  15. 15.
    Okada M, Tachikawa K, Aoi K (1999) Biodegradable polymers based on renewable resources. III. Copolyesters composed of 1,4:3,6-dianhydro-D-glucitol, 1,1-bis(5-carboxy-2-furyl)ethane and aliphatic dicarboxylic acid units. J Appl Polym Sci 74(14):3342–3350CrossRefGoogle Scholar
  16. 16.
    Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci 107(11):4919–4924CrossRefGoogle Scholar
  17. 17.
    Gandini A, Glass J, Swift G (1990) Agricultural and synthetic polymers, biodegradability and utilization. In: ACS Symposium Series, pp 195–208Google Scholar
  18. 18.
    Nakahara K, Mitsui C, Okamoto T, Yamagishi M, Matsui H, Ueno T, Tanaka Y, Yano M, Matsushita T, Soeda J, Hirose Y, Sato H, Yamano A, Takeya J (2014) Furan fused V-shaped organic semiconducting materials with high emission and high mobility. Chem Commun 50(40):5342–5344CrossRefGoogle Scholar
  19. 19.
    Nakanishi K, Sasamori T, Kuramochi K, Tokitoh N, Kawabata T, Tsubaki K (2014) Synthesis and properties of butterfly-shaped expanded naphthofuran derivatives. J Org Chem 79(6):2625–2631CrossRefGoogle Scholar
  20. 20.
    Chen H, Guo Y, Mao Z, Gao D, Yu G (2014) High‐performance field‐effect transistors based on furan‐containing diketopyrrolopyrrole copolymer under a mild annealing temperature. J Polym Sci Part A Polym ChemGoogle Scholar
  21. 21.
    Nakanishi K, Fukatsu D, Takaishi K, Tsuji T, Uenaka K, Kuramochi K, Kawabata T, Tsubaki K (2014) Oligonaphthofurans: fan-shaped and three-dimensional π-compounds. J Am Chem Soc 136(19):7101–7109CrossRefGoogle Scholar
  22. 22.
    Chen H, Delaunay W, Li J, Wang Z, Bouit P-A, Tondelier D, Geffroy B, Mathey F, Duan Z, Réau R, Hissler M (2013) Benzofuran-fused phosphole: synthesis, electronic, and electroluminescence properties. Org Lett 15(2):330–333CrossRefGoogle Scholar
  23. 23.
    Watanabe M, Su W-T, Chang YJ, Chao T-H, Wen Y-S, Chow TJ (2013) Solution-processed optoelectronic properties of functionalized anthradifuran. Chem Asian J 8(1):60–64CrossRefGoogle Scholar
  24. 24.
    Mitsudo K, Harada J, Tanaka Y, Mandai H, Nishioka C, Tanaka H, Wakamiya A, Murata Y, Suga S (2013) Synthesis of hexa(furan-2-yl)benzenes and their π-extended derivatives. J Org Chem 78(6):2763–2768CrossRefGoogle Scholar
  25. 25.
    Mitsui C, Soeda J, Miwa K, Tsuji H, Takeya J, Nakamura E (2012) Naphtho[2,1-b:6,5-b′]difuran: a versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J Am Chem Soc 134(12):5448–5451CrossRefGoogle Scholar
  26. 26.
    Chong Q, Xin X, Wang C, Wu F, Wang H, J-c S, Wan B (2014) DABCO-catalyzed synthesis of trifluoromethylated furans from propargyl alcohols and methyl 2-perfluoroalkynoate. J Org Chem 79(5):2105–2110CrossRefGoogle Scholar
  27. 27.
    Erdenebileg U, Høstmark I, Polden K, Sydnes LK (2014) Synthesis and reactivity of 4-amino-substituted furfurals. J Org Chem 79(3):1213–1221CrossRefGoogle Scholar
  28. 28.
    Fallon T, Willis AC, Paddon-Row MN, Sherburn MS (2014) Furanodendralenes. J Org Chem 79(7):3185–3193CrossRefGoogle Scholar
  29. 29.
    Gupta KSV, Suresh T, Singh SP, Islam A, Han L, Chandrasekharam M (2014) Carbazole based A-π-D-π-A dyes with double electron acceptor for dye-sensitized solar cell. Org Electron 15(1):266–275CrossRefGoogle Scholar
  30. 30.
    Oblak EZ, VanHeyst MD, Li J, Wiemer AJ, Wright DL (2014) Cyclopropene cycloadditions with annulated furans: total synthesis of (+)- and (−)-frondosin B and (+)-frondosin A. J Am Chem Soc 136(11):4309–4315CrossRefGoogle Scholar
  31. 31.
    Recsei C, Chan B, McErlean CSP (2014) Synthesis of (+)-luzofuran and (−)-ancistrofuran. J Org Chem 79(3):880–887CrossRefGoogle Scholar
  32. 32.
    Shi S, Xie X, Gao C, Shi K, Chen S, Yu G, Guo L, Li X, Wang H (2014) Synthesis and characterization of angular-shaped naphtho[1,2-b;5,6-b′]difuran–diketopyrrolopyrrole-containing copolymers for high-performance organic field-effect transistors. Macromolecules 47(2):616–625CrossRefGoogle Scholar
  33. 33.
    Siyang HX, Wu XR, Liu HL, Wu XY, Liu PN (2014) A tandem reaction of benzyne with functionalized benzylidenephthalan to afford phenanthro[10,1-bc]furan. J Org Chem 79(3):1505–1510CrossRefGoogle Scholar
  34. 34.
    Sonar P, Ha TJ, Seong Y, Yeh SC, Chen CT, Manzhos S, Dodabalapur A (2014) A study of diphenylfumaronitrile and furan‐substituted diketopyrrolopyrrole alternating copolymer and its thin‐film transistors. Macromol Chem Phys 215(8):725–732CrossRefGoogle Scholar
  35. 35.
    Zhang H, Zhang J, Tieke B (2014) A comparative study of polymers containing naphthodifuranone and benzodifuranone units in the main chain. Polym Chem 5(2):646–652CrossRefGoogle Scholar
  36. 36.
    Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2013) Quantum chemical approach toward the electronic, photophysical and charge transfer properties of the materials used in organic field-effect transistors. Mater Chem Phys 138(2–3):468–478CrossRefGoogle Scholar
  37. 37.
    Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photo-physical properties of naphtho[2,1-b:6,5-b′]difuran derivatives: a theoretical study. Sci Adv Mater 6(8):1727–1739CrossRefGoogle Scholar
  38. 38.
    Chaudhry AR, Ahmed R, Irfan A, Shaari A, Maarof H, Al-Sehemi AG (2014) First principles investigations of electronic, photoluminescence and charge transfer properties of the naphtho[2,1-b:6,5-b′]difuran and its derivatives for OFET. Sains Malays 43(6):867–875Google Scholar
  39. 39.
    Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi AG (2014) Effect of heteroatoms substitution on electronic, photophysical and charge transfer properties of naphtha [2,1-b:6,5-b′] difuran analogues by density functional theory. Comput Theor Chem 1045:123–134CrossRefGoogle Scholar
  40. 40.
    Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi AG (2014) Influence of push-pull configuration on the electro-optical and charge transport properties of novel naphtho-difuran derivatives: a DFT study. RSC Adv 4(90):48876–48887CrossRefGoogle Scholar
  41. 41.
    Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi A (2014) How does the increment of hetero-cyclic conjugated moieties affect electro-optical and charge transport properties of novel naphtha-difuran derivatives? A computational approach. J Mol Model 20(12):1–11CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  43. 43.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  44. 44.
    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261CrossRefGoogle Scholar
  45. 45.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28(3):213–222CrossRefGoogle Scholar
  46. 46.
    Dill JD, Pople JA (1975) Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron. J Chem Phys 62(7):2921–2923CrossRefGoogle Scholar
  47. 47.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256(4–5):454–464CrossRefGoogle Scholar
  48. 48.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224CrossRefGoogle Scholar
  49. 49.
    Van Caillie C, Amos RD (1999) Geometric derivatives of excitation energies using SCF and DFT. Chem Phys Lett 308(3–4):249–255CrossRefGoogle Scholar
  50. 50.
    Van Caillie C, Amos RD (2000) Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem Phys Lett 317(1–2):159–164CrossRefGoogle Scholar
  51. 51.
    Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117(16):7433–7447CrossRefGoogle Scholar
  52. 52.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108(11):4439–4449CrossRefGoogle Scholar
  53. 53.
    Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas J-L (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124(27):7918–7919CrossRefGoogle Scholar
  54. 54.
    Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules. J Chem Phys 115(20):9103–9109CrossRefGoogle Scholar
  55. 55.
    Irfan A, Cui R, Zhang J (2009) Fluorinated derivatives of mer-Alq3: energy decomposition analysis, optical properties, and charge transfer study. Theor Chem Accounts 122(5–6):275–281CrossRefGoogle Scholar
  56. 56.
    Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K-i, Brédas J-L (2006) Probing charge transport in π-stacked fluorene-based systems. J Phys Chem B 110(19):9482–9487CrossRefGoogle Scholar
  57. 57.
    Li Y, Zou L-Y, Ren A-M, Feng J-K (2012) Theoretical study on the electronic structures and photophysical properties of a series of dithienylbenzothiazole derivatives. Comput Theor Chem 981:14–24CrossRefGoogle Scholar
  58. 58.
    Lin BC, Cheng CP, You Z-Q, Hsu C-P (2004) Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): Why it is an electron transporter. J Am Chem Soc 127(1):66–67CrossRefGoogle Scholar
  59. 59.
    Troisi A, Orlandi G (2001) The hole transfer in DNA: calculation of electron coupling between close bases. Chem Phys Lett 344(5–6):509–518CrossRefGoogle Scholar
  60. 60.
    Yin S, Yi Y, Li Q, Yu G, Liu Y, Shuai Z (2006) Balanced carrier transports of electrons and holes in silole-based compounds a theoretical study. J Phys Chem A 110(22):7138–7143CrossRefGoogle Scholar
  61. 61.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5004CrossRefGoogle Scholar
  62. 62.
    Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas J-L (2006) Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc 128(30):9882–9886CrossRefGoogle Scholar
  63. 63.
    Shuai Z, Beljonne D, Silbey RJ, Brédas JL (2000) Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes. Phys Rev Lett 84(1):131–134CrossRefGoogle Scholar
  64. 64.
    Irfan A, Al-Sehemi AG, Muhammad S, Zhang J (2011) Packing effect on the transfer integrals and mobility in α, α’-bis(dithieno[3,2-b:2′,3′-d]thiophene) (BDT) and its heteroatom-substituted analogues. Aust J Chem 64(12):1587–1592CrossRefGoogle Scholar
  65. 65.
    Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photo-physical properties of the naphtho[2,1-b:6,5-b′]difuran derivatives: a theoretical study. Sci Adv Mater 6:1–13CrossRefGoogle Scholar
  66. 66.
    Irfan A, Cui R, Zhang J, Nadeem M (2010) Designing of disubstituted derivatives of mer-Alq3: quantum theoretical study. Aust J Chem 63(8):1283–1289CrossRefGoogle Scholar
  67. 67.
    Irfan A, Zhang J, Chang Y (2010) Theoretical investigations of the charge transfer properties of anthracene derivatives. Theor Chem Accounts 127(5–6):587–594CrossRefGoogle Scholar
  68. 68.
    Irfan A, Cui R, Zhang J, Hao L (2009) Push–pull effect on the charge transfer, and tuning of emitting color for disubstituted derivatives of mer-Alq3. Chem Phys 364(1–3):39–45CrossRefGoogle Scholar
  69. 69.
    Irfan A, Nadeem M, Athar M, Kanwal F, Zhang J (2011) Electronic, optical and charge transfer properties of α, α’-bis(dithieno[3,2-b:2′,3′- d]thiophene) (BDT) and its heteroatom-substituted analogues. Comput Theor Chem 968(1–3):8–11CrossRefGoogle Scholar
  70. 70.
    Irfan A, Zhang J (2009) Effect of one ligand substitution on charge transfer and optical properties in mer-Alq3: a theoretical study. Theor Chem Accounts 124(5–6):339–344CrossRefGoogle Scholar
  71. 71.
    Irfan A, Zhang J, Chang Y (2009) Theoretical investigations of the charge transfer characteristics in dichlorotitanium phthalocyanine (TiCl2Pc) and tin phthalocyanine (SnPc). Chem Phys Lett 483(1–3):143–146CrossRefGoogle Scholar
  72. 72.
    Huang J, Kertesz M (2004) Intermolecular transfer integrals for organic molecular materials: can basis set convergence be achieved? Chem Phys Lett 390(1–3):110–115CrossRefGoogle Scholar
  73. 73.
    Yang X, Li Q, Shuai Z (2007) Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems. Nanotechnology 18Google Scholar
  74. 74.
    Song Y, Ca D, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu D (2006) A cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128(50):15940–15941CrossRefGoogle Scholar
  75. 75.
    Wang C, Wang F, Yang X, Li Q, Shuai Z (2008) Theoretical comparative studies of charge mobilities for molecular materials: pet versus bnpery. Org Electron 9(5):635–640CrossRefGoogle Scholar
  76. 76.
    Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartz C (2008) Simulating charge transport in tris(8-hydroxyquinoline) aluminium (Alq3). Phys Chem Chem Phys 10(14):1852–1858CrossRefGoogle Scholar
  77. 77.
    Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Computational methods for design of organic materials with high charge mobility. Chem Soc Rev 39(2):423–434CrossRefGoogle Scholar
  78. 78.
    Yang X, Wang L, Wang C, Long W, Shuai Z (2008) Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes. Chem Mater 20(9):3205–3211CrossRefGoogle Scholar
  79. 79.
    Nan G, Wang L, Yang X, Shuai Z, Zhao Y (2009) Charge transfer rates in organic semiconductors beyond first-order perturbation: from weak to strong coupling regimes. J Chem Phys 130(2):024704–024708CrossRefGoogle Scholar
  80. 80.
    Deng W-Q, Goddard WA (2004) Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B 108(25):8614–8621Google Scholar
  81. 81.
    Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al. (2009) Gaussian 09, revision A. 02. Gaussian Inc, Wallingford, pp 270–271Google Scholar
  82. 82.
    Zhang Y, Cai X, Bian Y, Li X, Jiang J (2008) Heteroatom substitution of oligothienoacenes: from good p-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J Phys Chem C 112(13):5148–5159CrossRefGoogle Scholar
  83. 83.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599–610CrossRefGoogle Scholar
  84. 84.
    Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci 99(9):5804–5809CrossRefGoogle Scholar
  85. 85.
    Yi Y, Zhu L, Brédas J-L (2012) Charge-transport parameters of acenedithiophene crystals: realization of one-, two-, or three-dimensional transport channels through alkyl and phenyl derivatizations. J Phys Chem C 116(8):5215–5224CrossRefGoogle Scholar
  86. 86.
    Mohakud S, Alex AP, Pati SK (2010) Ambipolar charge transport in α-oligofurans: a theoretical study. J Phys Chem C 114(48):20436–20442CrossRefGoogle Scholar
  87. 87.
    Duan Y-A, Geng Y, Li H-B, Jin J-L, Wu Y, Su Z-M (2013) Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells. J Comput Chem 34(19):1611–1619CrossRefGoogle Scholar
  88. 88.
    Li Y, Pullerits T, Zhao M, Sun M (2011) Theoretical characterization of the PC60BM: PDDTT model for an organic solar cell. J Phys Chem C 115(44):21865–21873CrossRefGoogle Scholar
  89. 89.
    Ku J, Lansac Y, Jang YH (2011) Time-dependent density functional theory study on benzothiadiazole-based low-band-gap fused-ring copolymers for organic solar cell applications. J Phys Chem C 115(43):21508–21516CrossRefGoogle Scholar
  90. 90.
    Liu T, Troisi A (2011) Absolute rate of charge separation and recombination in a molecular model of the P3HT/PCBM interface. J Phys Chem C 115(5):2406–2415CrossRefGoogle Scholar
  91. 91.
    Pandey L, Risko C, Norton JE, Brédas J-L (2012) Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45(16):6405–6414CrossRefGoogle Scholar
  92. 92.
    Accelrys Software Inc (2013) MaterialsStudio, version 7.0. Accelrys Software Inc, San DiegoGoogle Scholar
  93. 93.
    Baur WH, Kassner D (1992) The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr Sect B: Struct Sci 48(4):356–369CrossRefGoogle Scholar
  94. 94.
    Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909CrossRefGoogle Scholar
  95. 95.
    Liu J, Dong M, Qin Z, Wang J (2004) Grand canonical Monte Carlo simulation of benzene, cyclohexane and hexane sorption in AlPO4-5. THEOCHEM J Mol Struct 679(1–2):95–99CrossRefGoogle Scholar
  96. 96.
    Klemm E, Wang J, Emig G (1998) A comparative study of the sorption of benzene and phenol in silicalite, HAlZSM-5 and NaAlZSM-5 by computer simulation. Microporous Mesoporous Mater 26(1–3):11–21CrossRefGoogle Scholar
  97. 97.
    Fried JR, Weaver S (1998) Atomistic simulation of hydrocarbon diffusion in silicalite. Comput Mater Sci 11(4):277–293CrossRefGoogle Scholar
  98. 98.
    Masunov AÉ, Zorkii PM (1992) Donor-acceptor nature of specific nonbonded interactions of sulfur and halogen atoms. Influence on the geometry and packing of molecules. J Struct Chem 33(3):423–435CrossRefGoogle Scholar
  99. 99.
    Masunov AÉ, Grishchenko SI, Zorkii PM (1992) ZHURNAL FIZICHESKOI KHIMII. Russ J Phys Chem 66(1):60–69Google Scholar
  100. 100.
    Shinamura S, Osaka I, Miyazaki E, Nakao A, Yamagishi M, Takeya J, Takimiya K (2011) Linear- and angular-shaped naphthodithiophenes: selective synthesis, properties, and application to organic field-effect transistors. J Am Chem Soc 133(13):5024–5035CrossRefGoogle Scholar
  101. 101.
    Huang J-D, Wen S-H, Deng W-Q, Han K-L (2011) Simulation of hole mobility in α-oligofuran crystals. J Phys Chem B 115(10):2140–2147CrossRefGoogle Scholar
  102. 102.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  103. 103.
    Stewart RF (1979) On the mapping of electrostatic properties from bragg diffraction data. Chem Phys Lett 65(2):335–342CrossRefGoogle Scholar
  104. 104.
    Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1(2):153–163CrossRefGoogle Scholar
  105. 105.
    Shkir M, Muhammad S, AlFaify S, Irfan A, Yahia IS (2015) A dual approach to study the electro-optical properties of a noncentrosymmetric l-asparagine monohydrate. Spectrochim Acta A Mol Biomol Spectrosc 137:432–441CrossRefGoogle Scholar
  106. 106.
    Muhammad S, Xu H, Janjua MRSA, Su Z, Nadeem M (2010) Quantum chemical study of benzimidazole derivatives to tune the second-order nonlinear optical molecular switching by proton abstraction. Phys Chem Chem Phys 12(18):4791–4799CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aijaz Rasool Chaudhry
    • 1
    • 2
    • 5
  • R. Ahmed
    • 1
  • Ahmad Irfan
    • 3
    • 5
  • A. Shaari
    • 1
  • Ahmad Radzi Mat Isa
    • 1
  • Shabbir Muhammad
    • 2
    • 5
  • Abdullah G. Al-Sehemi
    • 3
    • 4
    • 5
  1. 1.Department of Physics, Faculty of ScienceUniversiti Teknologi Malaysia, UTM SkudaiJohorMalaysia
  2. 2.Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Unit of Science and Technology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Research Center for Advance Materials ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations