Bonding, aromaticity, and planar tetracoordinated carbon in Si2CH2 and Ge2CH2

  • Stefan Vogt-Geisse
  • Judy I-Chia Wu
  • Paul v. R. Schleyer
  • Henry F. SchaeferIII
Original Paper

Abstract

Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICSπzz) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0)πzz=--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).

Graphical Abstract

The three lowest Si2CH2 and Ge2CH2 isomers.

Keywords

Main group chemistry Planar tetracoordinated carbon Natural bond orbital 3–center 2–electron bond Nuclear-independent chemical shift Aromaticity Electrostatic potential 

Supplementary material

894_2015_2736_MOESM1_ESM.pdf (9.1 mb)
(PDF 9.08 MB)

References

  1. 1.
    Kutzelnigg W (1984) Angew Chem Int Ed 23(4):272CrossRefGoogle Scholar
  2. 2.
    Colegrove BT, Schaefer HF (1990) J Phys Chem 94(14):5593CrossRefGoogle Scholar
  3. 3.
    Palagyi Z, Schaefer HF, Kapuy E (1993) J Am Chem Soc 115(15):6901CrossRefGoogle Scholar
  4. 4.
    Thaddeus P, Vrtilek JM, Gottlieb CA (1985) Astrophys J 299:L63CrossRefGoogle Scholar
  5. 5.
    Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107(1):137CrossRefGoogle Scholar
  6. 6.
    Reisenauer HP, Maier G, Riemann A, Hoffmann RW (1984) Angew Chem Int Ed 23(8):641CrossRefGoogle Scholar
  7. 7.
    Dateo CE, Lee TJ (1997) Spectrochim Acta Mol Biomol Spectros 53(8):1065CrossRefGoogle Scholar
  8. 8.
    Lavallo V, Canac Y, Donnadieu B, Schoeller WW, Bertrand G (2006) Science 312(5774):722CrossRefGoogle Scholar
  9. 9.
    Lee TJ, Huang X, Dateo CE (2009) Mol Phys 107(8–12):1139CrossRefGoogle Scholar
  10. 10.
    Lee VY, Sekiguchi A (2007) Angew Chem Int Ed 46(35):6596CrossRefGoogle Scholar
  11. 11.
    Rubio M, Stålring J, Bernhardsson A, Lindh R, Roos BO (2000) Theor Chem Acc 105(1):15CrossRefGoogle Scholar
  12. 12.
    Achkasova E, Araki M, Denisov A, Maier JP (2006) J Mol Spec 237(1):70CrossRefGoogle Scholar
  13. 13.
    Wu Q, Cheng Q, Yamaguchi Y, Li Q, Schaefer HF (2010) J Chem Phys 132(4):044308CrossRefGoogle Scholar
  14. 14.
    Mohajeri A, Jenabi M (2007) J Mol Struct 820(1–3):65CrossRefGoogle Scholar
  15. 15.
    Hemberger P, Noller B, Steinbauer M, Fischer K, Fischer I (2010) J Phys Chem Lett 1(1):228CrossRefGoogle Scholar
  16. 16.
    Wu Q, Simmonett AC, Yamaguchi Y, Li Q, Schaefer HF (2010) J Phys Chem C 114(12):5447CrossRefGoogle Scholar
  17. 17.
    Minkin VI, Minyaev RM, Zacharov II (1977) J Chem Soc Chem Comm 7(7):213CrossRefGoogle Scholar
  18. 18.
    Ikuta S, Saitoh T, Wakamatsu S (2004) J Chem Phys 121(8):3478CrossRefGoogle Scholar
  19. 19.
    Hao Q, Simmonett AC, Yamaguchi Y, Fang DC, Schaefer HF (2011) J Comp Chem 32(1):15CrossRefGoogle Scholar
  20. 20.
    Wu Q, Hao Q, Yamaguchi Y, Li Q, Fang DC, Schaefer H F (2010) J Phys Chem. A 114 (26):7102CrossRefGoogle Scholar
  21. 21.
    Vogt-Geisse S, Sokolov AY, McNew SR, Yamaguchi Y, Schaefer H F (2013) J Phys Chem A 117 (28):5765CrossRefGoogle Scholar
  22. 22.
    Hoffmann R, Alder RW, Wilcox CF (1970) J Am Che Soc 92(16):4992CrossRefGoogle Scholar
  23. 23.
    Crans DC, Snyder JP (1980) J Am Chem Soc 102(23):7152CrossRefGoogle Scholar
  24. 24.
    Boldyrev AI, Simons J (1998) J Am Chem Soc 120(31):7967CrossRefGoogle Scholar
  25. 25.
    Li X, Wang LS, Boldyrev AI, Simons J (1999) J Am Chem Soc 121(25):6033CrossRefGoogle Scholar
  26. 26.
    Wang ZX, Schleyer PvR (2001) J Am Chem Soc 123(5):994CrossRefGoogle Scholar
  27. 27.
    Wang ZX, Manojkumar TK, Wannere C, Schleyer PvR (2001) Org Lett 3(9):1249CrossRefGoogle Scholar
  28. 28.
    Merino G, Méndez-Rojas MA, Vela A (2003) J Am Chem Soc 125(20):6026CrossRefGoogle Scholar
  29. 29.
    Li SD, Ren GM, Miao CQ, Jin ZH (2004) Angew Chem Int Ed 43(11):1371CrossRefGoogle Scholar
  30. 30.
    Merino G, Méndez-Rojas MA, Beltrán HI, Corminboeuf C, Heine T, Vela A (2004) J Am Chem Soc 126(49):16160CrossRefGoogle Scholar
  31. 31.
    Sahin Y, Prsang C, Hofmann M, Subramanian G, Geiseler G, Massa W, Berndt A (2003) Angew. Chem. Int. Ed. 42(6):671CrossRefGoogle Scholar
  32. 32.
    Pancharatna PD, Méndez-Rojas MA, Merino G, Vela A, Hoffmann R (2004) J Am Chem Soc 126(46):15309CrossRefGoogle Scholar
  33. 33.
    Deva Priyakumar U, Sastry GN (2004) Tetrahedron Lett 45(7):1515CrossRefGoogle Scholar
  34. 34.
    Minyaev RM, Gribanova TN, Minkin VI, Starikov AG, Hoffmann R (2005) J Org Chem 70 (17):6693CrossRefGoogle Scholar
  35. 35.
    Su MD (2005) Inorg Chem 44(13):4829CrossRefGoogle Scholar
  36. 36.
    Esteves PM, Ferreira NBP, Corra RJ (2005) J Am Chem Soc 127(24):8680CrossRefGoogle Scholar
  37. 37.
    Merino G, Méndez-Rojas MA, Vela A, Heine T (2007) J Comp Chem 28(1):362CrossRefGoogle Scholar
  38. 38.
    Sateesh B, Srinivas Reddy A, Sastry GN (2007) J Comp Chem 28(1):335CrossRefGoogle Scholar
  39. 39.
    Islas R, Heine T, Ito K, Schleyer PvR, Merino G (2007) J Am Chem Soc 129(47):14767CrossRefGoogle Scholar
  40. 40.
    Yang LM, Li XP, Ding YH, Sun CC (2009) J Mol Mod 15(1):97CrossRefGoogle Scholar
  41. 41.
    Wang Y (2009) J Comp Chem 30(13):2122CrossRefGoogle Scholar
  42. 42.
    Crigger C, Wittmaack BK, Tawfik M, Merino G, Donald KJ (2012) Phys Chem Chem Phys 14:14775CrossRefGoogle Scholar
  43. 43.
    Tam NM, Ngan VT, Nguyen MT (2014) Chem Phys Lett 595–596(0):272CrossRefGoogle Scholar
  44. 44.
    Schleyer PvR, Boldyrev AI (1991) J Chem Soc Chem Commun 0:1536CrossRefGoogle Scholar
  45. 45.
    X Li H, Zhang L, Wang G, Geske AI (2000) Boldyrev, Angew. Chem. Int. Ed. 39(20)Google Scholar
  46. 46.
    Reed AE, Curtiss LA, Weinhold FA (1988) Chem Rev 88(6):899CrossRefGoogle Scholar
  47. 47.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2011) NBO Version 4:0Google Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98(7):5648CrossRefGoogle Scholar
  49. 49.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  50. 50.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  51. 51.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, SV Levchenko, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8(27): 3172CrossRefGoogle Scholar
  52. 52.
    Schleyer PvR, Maerker C, Dransfeld A, Jiao H, E. Hommes NJRv (1996) J Am Chem Soc 118 (26):6317CrossRefGoogle Scholar
  53. 53.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105(10):3842CrossRefGoogle Scholar
  54. 54.
    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2006) Org Lett 8(5):863CrossRefGoogle Scholar
  55. 55.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J (2004) DJ Fox. Gaussian 03 revision e.01 Gaussian Inc. Wallingford CTGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefan Vogt-Geisse
    • 1
    • 2
  • Judy I-Chia Wu
    • 2
    • 3
  • Paul v. R. Schleyer
    • 2
  • Henry F. SchaeferIII
    • 2
  1. 1.Facultad de QuímicaPontifícia Universidad Católica de ChileSantiagoChile
  2. 2.Center for Computational Quantum ChemistryUniversity of GeorgiaAthensUSA
  3. 3.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations