Skip to main content
Log in

In-silico modeling studies of G-quadruplex with soy isoflavones having anticancerous activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Telomere forms t-loop and G-quadruplex as the protective structure and the formation of these structures hinder the telomerase enzyme action. The binding affinities of ligand which stabilize the G-quadruplex represent good correlation with telomerase inhibition depicted in the anti-cancerous action. Most of the potent G-quadruplex stabilizing compounds suffer from the poor drug like properties. Herein, natural dietary compounds isoflavones were taken for the theoretical study to examine their stabilizing effect on G-quadruplex structure. The experimental G-quadruplex complexes were reproduced to obtain and validate the theoretical parameters. The obtained theoretical binding energies are in significant correlation with the experimental data. Analysis of binding shows isoflavones to be groove binders, and differential nature of quadruplex grooves might be beneficial in the selectivity aspects. Among all, derrubone was found to have better selectivity as well as affinity for the G-quadruplex comparable to well known ligand TMPyP4. The GBSA rescoring result enlightens the various interaction terms involved in the binding process. Cumulative stabilizing effects coming from VDW, ES, and GB energy terms attest to optimal binding of derrubone molecule which can be considered as a lead for the higher phases of drug designing. These findings are of great value in terms of unexplored groove binding modes and the studied natural compounds might be helpful to direct the focus of synthetic chemists in designing of new generation of antitumor agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moser H, Dervan P (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:456–450

    Article  Google Scholar 

  2. Cooney M, Czernuszewicz G, Postel E, Flint S, Hogan M (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241:456–459

    Article  CAS  Google Scholar 

  3. Timsit Y, Moras D (1996) Cruciform structures and functions. Q Rev Biophys 29:279–307

    Article  CAS  Google Scholar 

  4. Wang G, Vasquez K (2007) Z–DNA, an active element in the genome. Front Biosci 12:4424–4438

    Article  CAS  Google Scholar 

  5. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  Google Scholar 

  6. Han H, Hurley L (2000) G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci 21:136–142

    Article  CAS  Google Scholar 

  7. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896

    Article  CAS  Google Scholar 

  8. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916

    Article  CAS  Google Scholar 

  9. Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907

    Article  CAS  Google Scholar 

  10. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  CAS  Google Scholar 

  11. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  Google Scholar 

  12. Hayflick L (1965) The limited in vitro life time of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  Google Scholar 

  13. Shay JW, Wright WE (2000) Hayflick limit and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    Article  CAS  Google Scholar 

  14. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  CAS  Google Scholar 

  15. Neidle S, Parkinson GN (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1:383–393

    Article  CAS  Google Scholar 

  16. White LK, Wright WE, Shay JW (2001) Telomerase inhibitors. Trends Biotechnol 19:114–120

    Article  CAS  Google Scholar 

  17. Mergny JL, Riou JF, Maillet P, Teulade-Fichou MP, Gilson E (2002) Natural and pharmacological regulation of telomerase. Nucleic Acids Res 3:839–865

    Article  Google Scholar 

  18. Lundblade V (2002) Telomere maintenance without telomerase. Oncogene 21:522–531

    Article  Google Scholar 

  19. de Titia L (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  Google Scholar 

  20. Stephen N, Gary P (2003) The structure of telomeric DNA. Curr Opin Chem Biol 13:275–283

    Google Scholar 

  21. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DMA structures. Nature 350:718–720

    Article  CAS  Google Scholar 

  22. Muniyappa K, Anuradha S, Byers B (2000) Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20:1361–1369

    Article  CAS  Google Scholar 

  23. Zaug AJ, Podell ER, Cech TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U S A 102:10864–10869

    Article  CAS  Google Scholar 

  24. Mergny J-L, Claude H (1998) G-quadruplex DNA: a target for drug design. Nat Med 4:1366–1367

    Article  CAS  Google Scholar 

  25. Mergny JL, Lacroix L, Teulade-Fichou M-P, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron J-P, Lehn J-M, Riou J-F, Garestier T, Helene C (2001) Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci U S A 98:3062–3067

    Article  CAS  Google Scholar 

  26. Riou J-F, Guittat L, Mailliet P, Laoui A, Renou E, Petitgenet O, Megnin-Chanet F, Helene C, Mergny JL (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci U S A 99:2672–2677

    Article  CAS  Google Scholar 

  27. Arora A, Kumar N, Agarwal T, Maiti S (2010) Human telomeric G-quadruplex: targeting with small molecules. FEBS J 277:1345–1349

    Article  CAS  Google Scholar 

  28. Zhang J-L, Fu Y, Zheng L, Li W, Li H, Sun Q, Xiao Y, Geng F (2009) Natural isoflavones regulate the quadruplex–duplex competition in human telomeric DNA. Nucleic Acids Res 37:2471–2482

    Article  CAS  Google Scholar 

  29. Jin Y, Li H, Liua P (2010) Label-free electrochemical selection of G-quadruplex-binding ligands based on structure switching. Biosens Bioelectron 25:2669–2674

    Article  CAS  Google Scholar 

  30. Jin Y, Chen G, Wang Y (2011) Gold nanorod-based FRET assay for selection of G-quadruplex-binding ligands. Gold Bull 44:163–169

    Article  CAS  Google Scholar 

  31. Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100–115

    Article  Google Scholar 

  32. Li Y, Upadhyay S, Bhuiyan M, Sarkar FH (1999) Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 18:3166–3172

    Article  CAS  Google Scholar 

  33. Sakamoto T, Horiguchi H, Oguma E, Kayama F (2009) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21:856–864

    Article  Google Scholar 

  34. Sathyamoorthy N, Wang TT (1997) Differential effects of dietaryphyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur J Cancer 33:2384–2389

    Article  CAS  Google Scholar 

  35. Peterson G, Barnes S (1993) Genistein and biochanin-A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22:335–345

  36. Kim SH, Kim YB, Jeon YT, Lee SC, Song YS (2009) Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells. Ann N Y Acad Sci 117:495–500

    Article  Google Scholar 

  37. Menon LG, Kuttan R, Nair MG, Chang YC, Kuttan G (1998) Effect of isoflavones genistein and daidzein in the inhibition of lung metastasis in mice induced by B16F-10 melanoma cells. Nutr Cancer 30:74–77

    Article  CAS  Google Scholar 

  38. Das A, Banik NL, Ray SK (2009) Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG Cells but not in human normal astrocytes. Cancer 116:164–176

    Google Scholar 

  39. Spinozzi F, Pagliacci MC, Migliorati R, Grignani MF, Riccardi C (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leikemia cells. Leuk Res 18:431–439

    Article  CAS  Google Scholar 

  40. Yeh TC, Chiang PC, Li TK, Hsu JL, Lin CJ, Wang SW (2007) Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochem Pharmacol 73:782–792

    Article  CAS  Google Scholar 

  41. Moiseeva EP, Almeida GM, Jones GD, Manson MM (2007) Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther 6:3071–3079

    Article  CAS  Google Scholar 

  42. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L (1995) Genistein a dietary ingested isoflavonoid inhibits cell proliferation and in vitro angiogenesis. J Nutr 125:790–797

    Google Scholar 

  43. Magee PJ, Raschke M, Steiner C, Duffin JG, Pool-Zobel BL, Jokela T, Wahala K, Rowland IR (2006) Equol: a comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion and DNA integrity of breast and prostate cells in vitro. Nutr Cancer 54:232–242

    Article  CAS  Google Scholar 

  44. Jagadeesh S, Kyo S, Banerjee PP (2006) Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res 66:2107–2115

    Article  CAS  Google Scholar 

  45. Guo JM, Kang GZ, Xiao BX, Liu DH, Zhang S (2004) Effect of daidzein on cell growth cell cycle and telomerase activity of human cervical cancer in vitro. Int J Gynecol Cancer 14:882–888

    Article  CAS  Google Scholar 

  46. Chemical Computing Group, Inc. (1998) Molecular Operating Environment Release 10. Montreal, Canada. http://www.chemcomp.com. Accessed July, 2011

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  48. Lang PT, Brozell SR, Mukherjee S, Pettersen ET, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) Dock6: combining technique to model RNA-small molecule complexes. RNA 15:1219–1230

    Article  CAS  Google Scholar 

  49. Huiyong S, Youyong L, Mingyun S, Sheng T, Lei X, Peichen P, Yan G, Tingjun H (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045

    Article  Google Scholar 

  50. Mitrasinovic PM, Tomar JS, Nair MS, Barthwal R (2011) Modeling of HIV-1 TAR RNA-ligand complexes. Med Chem 8:301–308

    Article  Google Scholar 

  51. Holt PA, Chaires JB, Trent JO (2008) Molecular docking of intercalators and groove-binders to nucleic acids using AutoDock and Surflex. J Chem Inf Model 48:1602–1615

    Article  CAS  Google Scholar 

  52. Ricci CG, Netz PA (2009) Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding model. J Chem Inf Model 49:1925–1935

  53. Hou J-Q, Chen S-B, Zan L-P, Ou T-M, Tan J-H, Leonard GL, Huang Z-S (2015) Identification of a selective G-quadruplex DNA binder using a multistep virtual screening approach. Chem Commun 51:198–201

    Article  CAS  Google Scholar 

  54. Lu X-J, Wilma OK (2003) X3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121

    Article  CAS  Google Scholar 

  55. Jain AK, Bhattacharya S (2011) Interaction of G-quadruplexes with non-intercalating duplex-DNA minor groove binding ligands. Bioconjug Chem 22:2355–2368

    Article  CAS  Google Scholar 

  56. Wang BH, Ternai B, Polya G (1997) Specific inhibition of cyclic AMP-dependent protein kinase by warangalone and robustic acid. Phytochemistry 44:788–796

    Google Scholar 

  57. Saski K, Tsurumaru Y, Yamamoto H, Yazaki K (2011) Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from sophora flavescens. Biol Chem 286:24125–24134

    Article  Google Scholar 

  58. Di Leva FS, Novellino E, Cavalli A, Parrinello M, Limongelli V (2014) Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res. doi:10.1093/nar/gku247

    Google Scholar 

  59. Ou T-M, Lu Y-J, Tan J-H, Huang Z-S, Wong K-Y, Gu L-Q (2008) G-Quadruplexes: targets in anticancer drug dessign. ChemMedChem 3:690–713

  60. Harrison RJ, Reszka AP, Haider SM, Romagnoli B, Morrell J, Read MA, Gowan SM, Incles CM, Kelland LR, Neidle S (2004) Evaluation of by disubstituted acridone derivatives as telomerase inhibitors: the importance of G-quadruplex binding. Bioorg Med Chem Lett 14:5845–5849

    Article  CAS  Google Scholar 

  61. Sun YR, Elzbieta I, Richard L, Karen D, Daekyu S, Mary PM, Roodman GD, Lawrence H, Daniel VH (2000) Effect of telomere and telomerase interactive agents on human tumor and normal cell lines. Clin Cancer Res 6:987–993

  62. Parkinson GN, Ghosh R, Neidle S (2007) Structural basis for binding of porphyrin to human telomeres. Biochemistry 46:2390–2397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Ritu Barthwal and Dr. Maya S. Nair for helpful suggestions and encouragement and MHRD, New Delhi for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Singh Tomar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, J.S. In-silico modeling studies of G-quadruplex with soy isoflavones having anticancerous activity. J Mol Model 21, 193 (2015). https://doi.org/10.1007/s00894-015-2723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2723-0

Keywords

Navigation