Skip to main content
Log in

TDDFT prediction of UV–vis absorption and emission spectra of tocopherols in different media

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO–LUMO first vertical excitation is a π–π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values.

Scheme from process methodological to obtain the absorption and emission spectra for tocopherols

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seppanen CM, Song QH, Csallany AS (2010) The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J Am Oil Chem Soc 87:469–481

    Article  CAS  Google Scholar 

  2. Sikorska E, Gόrecki T, Khmelinskii IV, Sikorski M, Kozioł J (2005) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89:217–225

    Article  CAS  Google Scholar 

  3. Ohkatsu Y, Kajiyama T, Arai Y (2001) Antioxidant activities of tocopherols. Polym Degrad Stab 72:303–311

    Article  CAS  Google Scholar 

  4. Wijtmans M, Pratt DA, Valgimigli L, DiLabio GA, Pedulli GF, Porter NA (2003) 6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants. Angew Chem Int Ed Engl 42:4370–4373

  5. Al-Sherbini E-SAM, El Noury AH, El Rouby MN, Ibrahim T (2009) Vitamin E (α-tocopherol) enhances the PDT action of hematoporphyrin derivatives on cervical cancer cells. Med Laser Appl 24:65–73

    Article  Google Scholar 

  6. Hathcock JN, Azzi A, Blumberg J, Bray T, Dickinson A, Frei B, Jialal I, Johnston CS, Kelly FJ, Kraemer K, Packer L, Parthasarathy S, Sies H, Traber MG (2005) Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 81:736–745

    CAS  Google Scholar 

  7. Refat MS, El-Shazly SA (2010) Identification of a new anti-diabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties. Eur J Med Chem 45:3070–3079

  8. Rondanini DP, Castro DN, Searles PS, Rousseaux MC (2011) Fatty acid profiles of varietal virgin olive oils (Olea europaea L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja). Grasas Aceites 62:399–409

    Article  CAS  Google Scholar 

  9. Arslan D, Özcan MM (2001) Influence of growing area and harvest date on the organic acid composition of olive fruits from Gemlik variety. Sci Hortic Amsterdam 130:633–641

    Article  Google Scholar 

  10. Salvador MD, Aranda F, Fregapane G (1998) Chemical composition of commercial cornicabra virgin olive oil from 1995/96 and 1996/97 Crops. J Am Oil Chem Soc 75:1305–1311

    Article  CAS  Google Scholar 

  11. Andjelkovic M, Camp JV, Pedra M, Renders K, Socaciu C, Verhé R (2008) Correlations of the phenolic compounds and the phenolic content in some Spanish and French olive oils. J Agric Food Chem 56:5181–5187

    Article  CAS  Google Scholar 

  12. Guimet F, Ferré J, Boqué R, Rius FX (2004) Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation emission matrix fluorescence spectroscopy. Anal Chim Acta 515:75–85

    Article  CAS  Google Scholar 

  13. Kyriakidis NB, Skarkalis P (2000) Fluorescence spectra measurement of olive oil and other vegetable oils. J AOAC Int 83:1435–1439

    CAS  Google Scholar 

  14. Galeano-Díaz T, Acedo-Valenzuela MI, Silva-Rodríguez A (2012) Determination of tocopherols in vegetable oil samples by non-aqueous capillary electrophoresis (NACE) with fluorimetric detection. J Food Compos Anal 25:24–30

    Article  Google Scholar 

  15. Tena N, Aparicio R, García-González DL (2012) Chemical changes of thermoxidized virgin olive oil determined by excitation–emission fluorescence spectroscopy (EEFS). Food Res Int 45:103–108

    Article  CAS  Google Scholar 

  16. Pinheiro-Sant’Anaa HM, Guinazi M, Oliveira Dda S, Lucia CMD, Reis Bde L, Brandão SCC (2011) Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J Chromatogr A 1218:8496–8502

    Article  Google Scholar 

  17. Papoti VT, Tsimidou MZ (2009) Looking through the qualities of a fluorimetric assay for the total phenol content estimation in virgin olive oil, olive fruit or leaf polar extract. Food Chem 112:246–252

    Article  CAS  Google Scholar 

  18. Chen H, Angiuli M, Ferrari C, Tombari E, Salvetti G, Bramanti E (2011) Tocopherol speciation as first screening for the assessment of extra virgin olive oil quality by reversed-phase high-performance liquid chromatography/fluorescence detector. Food Chem 125:1423–1429

    Article  CAS  Google Scholar 

  19. Tasan M, Gecgel U, Demirci M (2001) Effects of storage and industrial oilseed extraction methods on the quality and stability characteristics of crude sunflower oil (Helianthus annuus L). Grasas Aceites 62:389–398

    Article  Google Scholar 

  20. Sikorska E, Romaniuk A, Khmelinskii IV, Sikorski M, Kozioł J (2003) Characterization of edible oils using synchronous scanning fluorescence spectroscopy. Polish J Food Nutr Sci 12:108–112

    CAS  Google Scholar 

  21. Sikorska E, Gliszczyńska-Świgło A, Khmelinskii IV, Sikorski M (2005) Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. J Agric Food Chem 53:6988–6994

    Article  CAS  Google Scholar 

  22. Sikorska E, Romaniuk A, Khmelinskii IV, Herance R, Bourdelande JL, Sikorski M, Kozioł J (2004) Characterization of edible oils using total luminescence spectroscopy. J Fluoresc 14:25–35

    Article  CAS  Google Scholar 

  23. Zandomeneghi M, Carbonaro L, Caffarata C (2005) Fluorescence of vegetable oils: olive oils. J Agric Food Chem 53:759–766

    Article  CAS  Google Scholar 

  24. Escuderos ME, Sayago A, Moralesb MT, Aparicioc R (2009) Evaluation of α-tocopherol in virgin olive oil by a luminiscent method. Grasas Aceites 60:336–342

    Article  CAS  Google Scholar 

  25. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  26. Burke K, Werschnik J, Gross EKU (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:062206-1-062206-9

  27. Jacquemin D, Perpète EA, Scalmani Ciofini GI, Peltier C, Adamo C (2010) Absorption and emission spectra of 1,8-naphthalimide fluorophores: A PCM-TD-DFT investigation. Chem Phys 372:61–66

    Article  CAS  Google Scholar 

  28. Casanovas J, Jacquemin D, Perpète EA, Alemán C (2008) Fluorescein isothiocyanate: molecular characterization by theoretical calculations. Chem Phys 354:155–161

  29. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  30. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Ciofini I, Adamo C (2006) Absorption and emission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies. Chem Phys Lett 421:272–276

    Article  CAS  Google Scholar 

  31. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Ciofini I, Adamo C (2007) Fluorescence of 1,8-naphthalimide: A PCM-TD-DFT investigation. Chem Phys Lett 448:3–6

    Article  CAS  Google Scholar 

  32. Improta R, Barone V (2009) PCM/TD-DFT study of the two lowest excited states of uracil derivatives in solution: the effect of the functional and of the cavity model. J Mol Struct (THEOCHEM) 914:87–93

  33. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Assfeld X, Ciofini I, Adamo C (2006) Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins. J Chem Phys 125:164324-1-164324-11.

  34. Ciofini I, Adamo C (2007) Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory. J Phys Chem A 111:5549–5556

    Article  CAS  Google Scholar 

  35. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus Long-Range hybrids. J Chem Theory Comput 4:123–135

  36. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

  37. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct (THEOCHEM) 464:211–226

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  39. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  40. Burton GW, Ingold KU (1986) Vitamin E: Application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19:194–201

    Article  CAS  Google Scholar 

  41. Guo Y, Zhu Y, Xue Y, Xie D (2007) A theoretical investigation on the geometry and vibrational spectra of 10,10,2,6,5-pentamethyl-1-hydroxychroman: a model of α-tocopherol. Spectrochim Acta A 68:1287–1295

  42. Li X-Y, Hu C-X, Li M-L, Liu Z-G (2004) A study on photoinduced electronic transition in complex of vitamin E and benzoquinone. J Mol Struct (THEOCHEM) 674:257–266

    Article  CAS  Google Scholar 

  43. Klein E, Lukeš V, Ilčin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetic. Chem Phys 336:51–57

    Article  CAS  Google Scholar 

  44. Mohajeri A, Asemani SS (2009) Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J Mol Struct (THEOCHEM) 930:15–20

    Article  CAS  Google Scholar 

  45. Setiadi DH, Chass GA, Torday LL, Varro A, Papp JG (2003) Vitamin E models. Shortened side chain models of α, β, γ and δ tocopherol and tocotrienol—a density functional study. J Mol Struct (THEOCHEM) 637:11–26

    Article  CAS  Google Scholar 

  46. Lucarini M, Pedrielli P, Pedulli GF (1996) Bond dissociation energies of O-H bonds in substituted phenols from equilibration studies. J Org Chem 61:9259–9263

    Article  CAS  Google Scholar 

  47. Tafazoli S, Wright JS, O’Brien PJ (2005) Prooxidant and antioxidant activity of vitamin E analogues and troglitazone. Chem Res Toxicol 18:1567–1574

    Article  CAS  Google Scholar 

  48. Bakhouche K, Dhaouadi Z, Jaidane N, Hammoutène D (2015) Comparative antioxidant potency and solvent polarity effects on HAT mechanisms of tocopherols. Comput Theor Chem 1060:58–65

    Article  CAS  Google Scholar 

  49. Nagaoka S, Mukai K, Itoh T, Katsumata S (1992) Mechanism of antioxidant reaction of vitamin E. 2. Photoelectron spectroscopy and ab initio calculation. J Phys Chem 96:8184–8187

  50. Burton GW, Doba T, Gabe EJ, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053–7065

  51. Wehry EL, Rogers LB (1965) Application of linear free energy relations to electronically excited states of monosubstituted phenols. J Am Chem Soc 87:4234–4238

    Article  CAS  Google Scholar 

  52. Aranda FJ, Coutinho A, Berberan-Santos MN, Prieto MJE, Gómez-Fernández JC (1989) Fluorescence study of the location and dynamics of α- tocopherol in phospholipid vesicles. Biochim Biophys Acta 985:26–32

    Article  CAS  Google Scholar 

  53. Baunsgaard D, Andersson CA, Arndal A, Munck L (2000) Multi-way chemometrics for mathematical separation of fluorescent colorants and colour precursors from spectrofuorimetry of beet sugar and beet sugar thick juice as validated by HPLC analysis. Food Chem 70:113–121

    Article  CAS  Google Scholar 

  54. Bro R (1999) Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemom Intell Lab Syst 46:133–147

    Article  CAS  Google Scholar 

  55. Bro R, Berg FVD, Thybo A, Andersen CM, Jørgensen BM, Andersen H (2002) Multivariate data analysis as a tool in advanced quality monitoring in the food production chain. Trends Food Sci Technol 13:235–244

    Article  CAS  Google Scholar 

  56. Engelsen SB (1997) Explorative spectrometric evaluations of frying oil deterioration. J Am Oil Chem Soc 74:1495–1508

    Article  CAS  Google Scholar 

  57. Sun X, Zhang L, Li P, Xu B, Ma F, Zhang Q, Zhang W (2015) Fatty acid profiles based adulteration detection for flaxseed oil by gas chromatography mass spectrometry. LWT Food Sci Technol 63:430–436

    Article  CAS  Google Scholar 

  58. Guzmán E, Baeten V, Pierna JAF, García-Mesa JA (2015) Evaluation of the overall quality of olive oil using fluorescence spectroscopy. Food Chem 173:927–934

    Article  Google Scholar 

  59. Osorio MT, Haughey SA, Elliott CT, Koidis A (2014) Evaluation of methodologies to determine vegetable oil species present in oil mixtures: Proposition of an approach to meet the EU legislation demands for correct vegetable oils labeling. Food Res Int 60:66–75

    Article  CAS  Google Scholar 

  60. Mabood F, Boqué R, Folcarelli R, Busto O, Al-Harrasi A, Hussain J (2015) Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis. Spectrochim Acta A Mol Biomol Spectrosc 143:298–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Abdus Salam ICTP (International centre for Theoretical Physics) for their financial support to this work through the OEA-NET 45 project. K.B would like to thank Prof. Nadia Ouddai (University of El Hadj-Lakhdar Batna, Algeria), Prof. Samia Kaddour (University of Houari Boumediene Algiers, Algeria), for theirs material and moral supports, and William Mbogning Feudjio (University of Cameroon) for his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahina Bakhouche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4717 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhouche, K., Dhaouadi, Z., Lahmar, S. et al. TDDFT prediction of UV–vis absorption and emission spectra of tocopherols in different media. J Mol Model 21, 158 (2015). https://doi.org/10.1007/s00894-015-2706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2706-1

Keywords

Navigation