Skip to main content
Log in

Specific distributions of anions and cations of an ionic liquid through confinement between graphene sheets

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work was aimed to investigate the behavior, morphology, structure, and dynamical properties of pure ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) confined between two parallel and flat graphene sheets at different interwall distances, H. Thus, molecular dynamic (MD) simulations were performed for different interwall distances including (10, 14, 16, 20, 23, and 28) Å at seven temperatures from 278 to 308 K. These results showed that the distribution and orientation of cations and anions on the graphene sheets depended on H. At the shortest H, a dense monolayer of the anions and cations was formed between two graphene sheets. The number of these layers increased as H increased. The potential energy diagram as a function of H demonstrated a minimum potential energy at H = 16 Å. Also, there was a minimum overlap between the density profiles of the cations and anions at H = 16 Å. Diffusion coefficients of the cations and anions increased as temperature and H increased. Moreover, slope of the plot of the diffusion coefficients of the cations and anions versus H significantly changed at H = 16 Å. Orientation functions revealed that most of the cations oriented parallel to the graphene sheets.

Ionic liquid [emim][BF4] confined between two graphene sheets of 10 Å interwall distances at T = 278 K. Red, yellow, blue, and cyan spheres correspond to boron, fluorine, nitrogen, and carbon atoms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leng Y, Cummings PT (2005) Phys Rev Lett 94:026101

    Article  Google Scholar 

  2. Calbi MM, Cole MW, Gatica SM, Bojan MJ, Stan G (2001) Rev Mod Phys 73:857

    Article  CAS  Google Scholar 

  3. Alcoutlabi M, McKenna GB (2005) J Phys Condens Matter 17:R461

    Article  CAS  Google Scholar 

  4. Rogers RD, Seddon KR, Volkov S (eds) (2002) Green industrial applications of ionic liquids. NATO Science Series. Kluwer, Boston

    Google Scholar 

  5. Wasserscheid P, Welton T (eds) (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  6. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  7. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595

    Article  CAS  Google Scholar 

  8. Kamat PV (1906) Acc Chem Res 2012:45

    Google Scholar 

  9. Brennecke JF, Maginn EJ (2001) AICHE J 47:2384

    Article  CAS  Google Scholar 

  10. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  11. Aliaga C, Santos CS, Baldelli S (2007) Phys Chem Chem Phys 9:3683

    Article  CAS  Google Scholar 

  12. Sloutskin E, Ocko BM, Tamam L, Kuzmenko I, Gog T, Deutsch M (2005) J Am Chem Soc 127:7796

    Article  Google Scholar 

  13. Bhargava BL, Balasubramanian S (2006) J Am Chem Soc 128:10073

    Article  CAS  Google Scholar 

  14. Heggen B, Zhao W, Leroy F, Dammers AJ, Mȕller-Plathe F (2010) J Phys Chem B 114:6954

    Article  CAS  Google Scholar 

  15. Sieffert N, Wipff G (2008) J Phys Chem C 112:19590

    Article  CAS  Google Scholar 

  16. Mezger M, Schröder H, Reichert H, Schramm S, Okasinski JS, Schröder S, Honkimäki V, Deutsch M, Ocko BM, Ralston J, Rohwerder M, Stratmann M, Dosch H (2008) Science 322:424

    Article  CAS  Google Scholar 

  17. Lynden-Bell RM, Kohanoff J, Del Popolo MG (2005) Faraday Discuss 129:57

    Article  CAS  Google Scholar 

  18. Chaumont A, Schurhammer R, Wipff G (2005) J Phys Chem B 109:18964

    Article  CAS  Google Scholar 

  19. Kislenko SA, Samoylov LS, Amirov RH (2009) Phys Chem Chem Phys 11:5584

    Article  CAS  Google Scholar 

  20. Wang S, Li S, Cao Z, Yan T (2009) J Phys Chem Chem Phys 11:5584

    Article  Google Scholar 

  21. Ghatee MH, Moosavi F (2011) J Phys Chem C 115:5626

    Article  CAS  Google Scholar 

  22. Dou Q, Sha M, Fu H, Wu G (2010) Chem Phys Chem 11:2438

    CAS  Google Scholar 

  23. Maolin S, Fuchun Z, Guozhong W, Haiping F, Chunlei W, Shimou C, Yi Z, Jun H (2008) J Chem Phys 128:134504

    Article  Google Scholar 

  24. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Adv Mater 22:2206

    Article  CAS  Google Scholar 

  25. Chen F, Qing Q, Xia J, Li J, Tao N (2009) J Am Chem Soc 131:9908

    Article  CAS  Google Scholar 

  26. Ariga K, Hill JP, Ji Q (2007) Phys Chem Chem Phys 9:2319

    Article  CAS  Google Scholar 

  27. Ji Q, Honma I, Peak SM, Akada M, Hill JP, Vinu A, Ariga K (2010) Angew Chem Int Ed 49:9737

    Article  CAS  Google Scholar 

  28. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) NPG Asia Mater 4:1

    Article  Google Scholar 

  29. Xiao W, Sun Z, Chen S, Zhang H, Zhao Y, Huang C, Liu Z (2012) RSC Adv 2:8189

    Article  CAS  Google Scholar 

  30. Rajput NN, Monk J, Hung FR (2012) J Phys Chem C 116:14504

    Article  CAS  Google Scholar 

  31. Shim Y, Kim HJ, Jung Y (2012) Faraday Discuss 154:249

    Article  CAS  Google Scholar 

  32. Rajput NN, Monk J, Hung FR (2014) J Phys Chem C 118:1540

    Article  CAS  Google Scholar 

  33. Singh R, Monk J, Hung FR (2010) J Phys Chem C 114:15478

    Article  CAS  Google Scholar 

  34. Sha M, Wu G, Liu Y, Tang Z, Fang H (2009) J Phys Chem C 113:4618

    Article  CAS  Google Scholar 

  35. Pinilla C, Del Popolo MG, Lynden-Bell RM, Kohanoff J (2005) J Phys Chem B 109:17922

    Article  CAS  Google Scholar 

  36. Holbrey JD, Seddon KR (1999) J Chem Soc Dalton Trans pp 2133-2140, doi: 10.1039/A902818H

  37. Gupta AK, Singh MP, Singh RM, Chandra S (2012) Dalton Trans 41:6263

    Article  CAS  Google Scholar 

  38. Singh MP, Singh RK, Chandra S (2014) Prog Mater Sci 64:73

    Article  CAS  Google Scholar 

  39. Gupta AK, Singh RK, Chandra S (2014) RSC ADV 4:22277

    Article  CAS  Google Scholar 

  40. Gupta AK, Singh RK, Chandra S (2013) RSC ADV 3:13869

    Article  CAS  Google Scholar 

  41. Gupta AK, Verma YL, Singh RK, Chandra S (2014) J Phys Chem C 118:1530

    Article  CAS  Google Scholar 

  42. Won CY, Joseph S, Aluru NR (2006) J Chem Phys 125:114701

    Article  Google Scholar 

  43. Jorgensen WL, Maxwell DS, Tirado-Rivers J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  44. Lopes JNAC, Deschamps J, Pádua AAH (2004) J Phys Chem B 108:2038

    Article  CAS  Google Scholar 

  45. Lopes JNAC, Pádua AAH (2004) J Phys Chem B 108:16893

    Article  CAS  Google Scholar 

  46. Lopes JNAC, Pádua AAH (2006) J Phys Chem B 110:19586

    Article  Google Scholar 

  47. Lopes JNAC, Padua AAH, Shimizu K (2008) J Phys Chem B 112:5039

    Article  Google Scholar 

  48. Liu Z, Huang S, Wang W (2004) J Phys Chem B 108:12978

    Article  CAS  Google Scholar 

  49. Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  50. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  51. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  52. Beeman D (1976) J Comput Phys 20:130

    Article  Google Scholar 

  53. Wang S, Li S, Cao Z, Yan T (2010) J Phys Chem C 114:990

    Article  CAS  Google Scholar 

  54. Senapati S, Chandra A (1998) Chem Phys 231:65

    Article  CAS  Google Scholar 

  55. Gao J, Luedtke WD, Landman U (1997) J Phys Chem B 101:4013

    Article  CAS  Google Scholar 

  56. Margulis CJ, Stern HA, Berne BJ (2002) J Phys Chem B 106:12017

    Article  CAS  Google Scholar 

  57. de Andrade J, Böes E, Stassen H (2002) J Phys Chem B 106:13344

    Article  Google Scholar 

  58. Foroutan M, Mohammadi M (2013) Phys Chem Chem Phys 15:2482

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumeh Foroutan.

Electronic supplementary material

Additional information, including RDFs between anion and anion (B–B), RDFs of the cation (CP atom) around the anion (B atom), RDFs of the graphene and the B atom of the anion, PMFs of B–B, B–CP, and B–CT3, the number density profiles of the anion and cation along the distance between the two graphene, and D0 values for both anion and cation as a function of H. This material is available free of charge via the internet at http://pubs.acs.org

ESM 1

(DOC 2805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alibalazadeh, M., Foroutan, M. Specific distributions of anions and cations of an ionic liquid through confinement between graphene sheets. J Mol Model 21, 168 (2015). https://doi.org/10.1007/s00894-015-2703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2703-4

Keywords

Navigation