Skip to main content
Log in

Small copper-doped silicon clusters CuSin (n = 4–10) and their anions: structures, thermochemistry, and electron affinities

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and energies of copper-doped small silicon clusters CuSi n (n = 4–10) and their anions were investigated systematically using CCSD(T)/aug-cc-pVTZ-DK//MP2/6-31G(2df,p), G4//MP2/6-31G(2df,p), and the B3LYP/6-311+G* basis set. The performance of the methods used for the prediction of energetic and thermodynamic properties was evaluated. Comparing experimental [Xu et al. (2012) J Chem Phys 136:104308] and theoretical calculations, it was concluded that the CCSD(T) results are very accurate and exhibit the best performance; the mean absolute deviation from experimental data was 0.043 eV. The excellent agreement of vertical detachment energy (VDE) between experimental results and CCSD(T) calculations indicates that the ground state structures of CuSi n (n = 4–10) presented in this paper are reliable. For CuSi10, assigning 2.90±0.08 eV to the experimental adiabatic electron affinity (AEA) and 3.90±0.08 eV to the VDE is more reasonable than to 3.46±0.08 eV and 3.62±0.08 eV, respectively, based on the CCSD(T) calculations and the previous photoelectron spectrum of CuSi10 (Xu et al., op. cit.). The AEAs of CuSi n (n = 4–10), excluding CuSi7, are in excellent agreement with experimental data, showing that the ground state structures of CuSi n (n = 4–6, 8–10) reported in this paper are reliable. CuSi10 is suggested to be the smallest endohedral ground state structure. However, adding an additional electron to CuSi10 pulls out the Cu atom from the center location, forming an exohedral ground state structure of CuSi10 . The charge transfer and dissociation energy of Cu from CuSi n and their anions determined to examine the nature of bonding and their relative stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beck SM (1987) J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  2. Honea EC, Ogura A, Peale DR, Félix C, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1999) J Chem Phys 110:12161–12172

    Article  CAS  Google Scholar 

  3. Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Phys Rev B 77:195417-1–195417-8

    Google Scholar 

  4. Koyasu K, Atobe J, Furuse S, Nakajima A (2008) J Chem Phys 129:214301-1–214301-7

    Article  Google Scholar 

  5. Fan HW, Yang JC, Lu W, Ning HM, Zhang QC (2010) J Phys Chem A 114:1218–1223

    Article  CAS  Google Scholar 

  6. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42–49

    Article  CAS  Google Scholar 

  7. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733–1736

    Article  CAS  Google Scholar 

  8. Han JG, Hagelberg F (2009) J Comput Theor Nanosci 6:257–269

    Article  CAS  Google Scholar 

  9. Wang J, Ma QM, Xu RP, Liu Y, Li YC (2009) Phys Lett A 373:2869–2875

    Article  CAS  Google Scholar 

  10. Lu J, Yang JC, Xing ZF, Ning HM (2014) J Theor Comput Chem 13:1450038-1–1450038-24

    Google Scholar 

  11. Lu J, Yang JC, Kang YL, Ning HM (2014) J Mol Model 20:2114-1–2114-12

    Google Scholar 

  12. Guo LJ, Liu X, Zhao GF (2007) Chem Phys 126:234704-1–234704-7

    Google Scholar 

  13. Xu HG, Zhang ZG, Feng Y, Yuan JY, Zhao YC, Zheng WJ (2010) Chem Phys Lett 487:204–208

    Article  CAS  Google Scholar 

  14. Kong XY, Xu HG, Zheng WJ (2012) J Chem Phys 137:064307-1–064307-9

    Article  Google Scholar 

  15. Li JR, Wang GH, Yao CH, Mu YW, Wan JG, Han M (2009) J Chem Phys 130:164514-1–164514-9

    Google Scholar 

  16. Khanna SN, Rao BK, Jena P, Nayak SK (2003) Chem Phys Lett 373:433–438

    Article  CAS  Google Scholar 

  17. Ma L, Zhao JJ, Wang JG, Lu QL, Zhu LZ, Wang GH (2005) Chem Phys Lett 411:279–284

    Article  CAS  Google Scholar 

  18. Ren ZY, Li F, Guo P, Han JG (2005) J Mol Struct: THEOCHEM 718:165–173

    Article  CAS  Google Scholar 

  19. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503-1–045503-4

    Google Scholar 

  20. Kumar V, Kawazoe Y (2002) Phys Rev B 65:073404-1–073404-4

    Google Scholar 

  21. Steven MB (1989) J Chem Phys 90:6306–6312

    Article  Google Scholar 

  22. Jaeger JB, Jaeger TD, Duncan MA (2006) J Phys Chem A 110:9310–9314

    Article  CAS  Google Scholar 

  23. Neukermans S, Wang X, Veldeman N, Janssens E, Silverans RE, Lievens P (2006) Int J Mass Spectrom 252:145–150

    Article  CAS  Google Scholar 

  24. Janssens E, Gruene P, Meijer G, Woste L, Lievens P, Fielicke A (2007) Phys Rev Lett 99:063401-1–063401-4

    Article  Google Scholar 

  25. Gruene P, Fielicke A, Meijer G, Janssens E, Ngan VT, Nguyen MT, Lievens P (2008) Chem Phys Chem 9:703–706

    CAS  Google Scholar 

  26. Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) J Am Chem Soc 132:15589–15602

    Article  CAS  Google Scholar 

  27. Xu HG, Wu MM, Zhang ZG, Yuan JY, Sun Q, Zheng WJ (2012) J Chem Phys 136:104308-1–104308-10

    Google Scholar 

  28. Dkhissi A (2008) Int J Quantum Chem 108:996–1003

    Article  CAS  Google Scholar 

  29. Ovcharenko IV, Lester WA Jr, Xiao C, Hagelberg F (2001) J Chem Phys 114:9028–9032

    Article  CAS  Google Scholar 

  30. Xiao CY, Abraham A, Quinn R, Hagelberg F, Lester WA Jr (2002) J Phys Chem A 106:11380–11393

    Article  CAS  Google Scholar 

  31. Xiao C, Hagelberg F (2000) J Mol Struct: THEOCHEM 529:241–257

    Article  CAS  Google Scholar 

  32. Ona O, Bazterra VE, Caputo MC, Ferraro MB, Fuentealba P, Facelli JC (2004) J Mol Struct: THEOCHEM 681:149–155

    Article  CAS  Google Scholar 

  33. Lan YZ, Feng YL (2009) Phys Rev A 79:033201-1–033201-9

    Google Scholar 

  34. Hossain D, Pittman CU, Gwaltney SR (2008) Chem Phys Lett 451:93–97

    Article  CAS  Google Scholar 

  35. He JG, Wu KC, Sa RJ, Li QH, Wei YQ (2010) Chem Phys Lett 490:132–137

    Article  CAS  Google Scholar 

  36. He JG, Wu KC, Liu CP, Sa RJ (2009) Chem Phys Lett 483:30–34

    Article  CAS  Google Scholar 

  37. Zdetsis AD (2007) Phys Rev B 75:085409-1–085409-10

    Article  Google Scholar 

  38. Zdetsis AD, Koukaras EN, Garoufalis CS (2009) J Math Chem 46:971–980

    Article  CAS  Google Scholar 

  39. Gueorguiev GK, Pacheco JM, Stafstrom S, Hultman L (2006) Thin Solid Films 515:1192–1196

    Article  CAS  Google Scholar 

  40. Sen P, Mitas L (2003) Phys Rev B 68:1554041-1–1554041-4

    Google Scholar 

  41. Xiao CY, Hagelberg F, Lester WA (2002) Phys Rev B 66:075425-1–075425-23

    Google Scholar 

  42. Xiao C, Hagelberg F, Ovcharenko I, Lester WA Jr (2001) J Mol Struct: THEOCHEM 549:181–192

    Article  CAS  Google Scholar 

  43. Hagelberg F, Yanov I, Leszczynski J (1999) J Mol Struct: THEOCHEM 487:183–192

    Article  CAS  Google Scholar 

  44. Chuang FC, Hsu CC, Hsieh YY, Albao MA (2010) Chin J Phys 48:82–102

    CAS  Google Scholar 

  45. Li GL, Ma WL, Gao AM, Chen HY, Finlow D, Li QS (2012) J Theor Comput Chem 11:185–196

    Article  CAS  Google Scholar 

  46. Jiang WY, Laury ML, Powell M, Wilson AK (2012) J Chem Theor Comput 8:4102–4111

    Article  CAS  Google Scholar 

  47. Jiang WY, DeYonker NJ, Determan JJ, Wilson AK (2012) J Phys Chem A 116:870–885

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  50. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) J Phys Chem A 113:5170–5175

    Article  CAS  Google Scholar 

  51. Mitin AV, Baker J, Pulay P (2003) J Chem Phys 118:7775–7782

    Article  CAS  Google Scholar 

  52. Raghavachari K, Trucks GW, Pople JA, Gordon MH (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  53. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

    Article  CAS  Google Scholar 

  54. Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107-1–064107-15

    Article  Google Scholar 

  55. Douglas M, Kroll NM (1974) Ann Phys (NY) 82:89–155

    Article  CAS  Google Scholar 

  56. Hess BA (1985) Phys Rev A 32:756–763

    Article  CAS  Google Scholar 

  57. Hess BA (1986) Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  58. Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017

    Article  Google Scholar 

  59. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09 Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  61. Wu ZJ, Su ZM (2006) J Chem Phys 124:184306-1–184306-15

    Google Scholar 

  62. Tomonari M, Mochizuk YJ, Tanaka K (1999) Theor Chem Acc 101:332–335

    Article  CAS  Google Scholar 

  63. Boldyrev AI, Simons J, Scherer JJ, Paul JB, Collie CP, Saykally RJ (1998) J Chem Phys 108:5728–5732

    Article  CAS  Google Scholar 

  64. Turski P, Barysz M (1999) J Chem Phys 111:2973–2977

    Article  CAS  Google Scholar 

  65. Plass W, Stoll H, Preuss H, Savin A (1995) J Mol Struct: THEOCHEM 339:67–81

    Article  CAS  Google Scholar 

  66. Tsipis AC, Gkarmpounis DN (2012) J Comput Chem 33:2318–2331

    Article  CAS  Google Scholar 

  67. Lefebvre Y, Schamps J (2000) J Mol Spectrosc 201:128–133

    Article  CAS  Google Scholar 

  68. Scherer JJ, Paul JB, Collier CP, Saykally RJ (1995) J Chem Phys 102:5190–5199

    Article  CAS  Google Scholar 

  69. Turski P, Barysz M (2000) J Chem Phys 113:4654–4661

    Article  CAS  Google Scholar 

  70. Li S, Van Zee RJ, Weltner W Jr, Raghavachari K (1995) Chem Phys Lett 243:275–280

    Article  CAS  Google Scholar 

  71. Hao DS, Liu JR, Yang JC (2008) J Phys Chem A 112:10113–10119

    Article  CAS  Google Scholar 

  72. Yang JC, Xu WG, Xiao WS (2005) J Mol Struct: THEOCHEM 719:89–102

    Article  CAS  Google Scholar 

  73. Raghavachari K (1986) J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  74. Raghavachari K (1991) J Chem Phys 94:3670–3678

    Article  CAS  Google Scholar 

  75. Vasiliev I, Ogut S, Chelikowsky JR (1997) Phys Rev Lett 78:4805–4808

    Article  CAS  Google Scholar 

  76. King RB (1991) Z Phys D 18:189–191

    Article  CAS  Google Scholar 

  77. Zhu XL, Zeng XC (2003) J Chem Phys 118:3558–3570

    Article  CAS  Google Scholar 

  78. Ning HM, Fan HW, Yang JC (2011) Comput Theor Chem 976:141–147

    Article  CAS  Google Scholar 

  79. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21263010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Yang, J. Small copper-doped silicon clusters CuSin (n = 4–10) and their anions: structures, thermochemistry, and electron affinities. J Mol Model 21, 155 (2015). https://doi.org/10.1007/s00894-015-2702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2702-5

Keywords

Navigation