Abstract
The three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications, although the inherent complexity to understand the results coming from 3D-QSAR arises the necessity of new insights in the interpretation of them. Hence, the quantum similarity field as well as reactivity descriptors based on the density functional theory were used in this work as a consistent approach to better understand the 3D-QSAR studies in drug design. For this purpose, the quantification of steric and electrostatic effects on a series of bicycle [4.1.0] heptane derivatives as melanin-concentrating hormone receptor 1 antagonists were performed on the basis of molecular quantum similarity measures. The maximum similarity superposition and the topo-geometrical superposition algorithms were used as molecular alignment methods to deal with the problem of relative molecular orientation in quantum similarity. In addition, a chemical reactivity analysis using global and local descriptors such as chemical hardness, softness, electrophilicity, and Fukui functions, was developed. Overall, our results suggest that the application of this methodology in drug design can be useful when the receptor is known or even unknown.
Similar content being viewed by others
References
Bohm M, Sturzebecher J, Klebe G (1999) J Med Chem 42:458
(1999) Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev Mod Phys 71, No. 5
Amat L, Carbó-Dorca R, Ponec R (1999) J Med Chem 42:5169
Klebe G (1998) Comparative molecular similarity indices: CoMSIA. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol 3. Kluwer, London, p 87
World Health Organization. Obesity and overweight. Consulted January 20, 2014. http://www.who.int/mediacentre/factsheets/fs311/en/index.html. Reported in April 8, 2014.
Bleich S, Cutler D, Murray C, Adams A (2008) Annu Rev Public Health 29:273
Martinez JA (2000) Body-weight regulation: causes of obesity. Proc Nutr Soc 59:337
Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) J Comp Neurol 319:218
Drewnowski A, Specter SE (2004) Am J Clin Nutr 79:6
Fernandez-Lopez J, Remesar X, Foz M, Alemany M (2002) For a review of current approaches for the treatment of obesity. Drugs 62:915
James WP (2008) Obes Rev 9:6
Nestle M, Jacobson MF (2000) Public Health Rep 115:12
Sturm R (2007) Public Health 121:492
Wang S, Behan J, O’Neill K, Weig B, Fried S, Laz T, Bayne M, Gustafson E, Hawes BE (2001) J Biol Chem 276:34664
Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong S-S, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Bansa A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LHT, Howard AD, Liu Q (2001) Proc Natl Acad Sci 98:7564
Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu W-S, Park J, Ellis C, Ganguly S, Cluderay SJ, Leslie RWS, Sarau HM (1999) Nature 400:261
Xu R, Li S, Paruchova J, McBriar MD, Guzik H, Palani A, Clader JW, Cox K, Greenlee WJ, Hawes BE, Kowalski TJ, O’Neil K, Spar BD, Weig B, Weston DJ (2006) Bioorg Med Chem 14:3285
Amat L, Carbó-Dorca R (2002) Int J Quantum Chem 87:59
Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793
Parr RG, Yang W (1989) Density Functional Theory of Atoms and Compounds. Oxford University Press, New York
Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520
Carbó-Dorca R, Arnau M, Leyda L (1980) Int J Quantum Chem 17:1185
Carbó-Dorca R, Gironés X (2005) Int J Quantum Chem 101:8
Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579
Bultinck P, Gironés X, Carbó-Dorca R (2005) Rev Comput Chem 21:127
Morales-Bayuelo A, Hernan A, Vivas-Reyes R (2010) Eur J Med Chem 45:4509
Hirshfeld FL (1977) Theor Chim Acta 44:129
De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198
Randic M, Johnson MA, Maggiora GM (1990) In concepts and applications of molecular similarity, design of compounds with desired properties. Wiley, New York. 77.
Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct 727:49
Pearson RG (1997) Chemical hardness: applications from compounds to solids. Wiley-VHC, Weinheim
Yang WT, Parr RG (1985) Proc Natl Acad Sci 82:6723
Ayers P, Parr RG (2000) J Am Chem Soc 122:2010
Parr RG, Yang W (1984) J Am Chem Soc 106:4049
Fuentealba P, Pérez P, Contreras R (2000) J Chem Phys 113:2544
Galván M, Pérez P, Contreras R, Fuentealba P (1999) Chem Phys Lett 30:405
Mortier WJ, Yang W (1986) J Am Chem Soc 108:5708
Blankley CJ (1996) In: van de Waterbeemd H (ed) Structure property correlations in drug research. Academic, Austin, pp 111–177
Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959–5967
Constans P, Amat L, Carbó-Dorca R (1997) J Comput Chem 18:826
Girones X, Robert D, Carbó-Dorca R (2001) J Comput Chem 22:255
Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1
Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125
Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article ID 239845, 19 pages
Morales-Bayuelo A, Vivas-Reyes R (2014) J Quant Chem Article ID 850163, 12 pages
Besalú E, Gironés X, Amat L, Carbó-Dorca R (2002) Acc Chem Res 35:289
Becke AD (1988) Phys Rev A 38:3098
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200
Katritzky AR, Akhmedov NG, Doskocz J, Mohapatra PP, Hall D, Güven A (2007) Magn Reson Chem 45:532
Bultinck P, Clarisse D, Ayers P, Carbó-Dorca R (2011) Phys Chem Chem Phys 13:6110
Morales-Bayuelo A, Caballero J (2015) J Mol Model 21:45
Frisch MJ, G. Trucks W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr. Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford, CT
Constans P, Amat L, Carbó-Dorca R (1997) J Comput Chem 18:826
Girones X, Robert D, Carbó-Dorca R (2001) J Comput Chem 22:255
Dyck B, Markison S, Zhao L, Tamiya J, Grey J, Rowbottom MW, Zhang M, Vickers T, Sorensen K, Norton C, Wen J, Heise CE, Saunders J, Conlon P, Madan A, Schwarz D, Goodfellow VS (2006) J Med Chem 49:3753
Cirauqui N, Schrey AK, Galiano S, Ceras J, Pérez-Silanes S, Aldana I, Monge A, Kühne R (2010) Bioorg Med Chem 18:7365
MCH-R1 melanin-concentrating hormone receptor 1 (Homo sapiens). http://www.ncbi.nlm.nih.gov/sites/entrez Gene ID: 2847, updated on 14-01-2015
Cheon HG (2012) Handb Exp Pharmacol 209:383
Hervieu G (2003) Expert Opin Ther Targets 7:495
Hervieu GJ (2006) Expert Opin Ther Targets 10:211
Huttunen R, Syrjänen J (2013) Int J Obes 37:333
Rivera G, Bocanegra-García V, Galiano S, Cirauqui N, Ceras J, Pérez S, Aldana I, Monge A (2008) Curr Med Chem 15:1025
Saito Y, Maruyama K (2006) J Exp Zool Comp Exp Biol 305:761
Shimazaki T, Yoshimizu T, Chaki S (2006) CNS Drugs 20:801
Su J, McKittrick BA, Tang H, Czarniecki M, Greenlee WJ, Hawes BE, O’Neill K (2005) Bioorg Med Chem 5:1829
Acknowledgments
Thanks to the Universidad de Talca (CBSM)) for the continuous support to this investigation, to the postdoctoral project N0 3150035 (FONDECYT, CHILE), to Dr. Ramon Carbó-Dorca (Universitat de Girona, España), and finally Dr. Andrzej Sokalski (associate editor) for their important comments.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOC 107 kb)
Rights and permissions
About this article
Cite this article
Morales-Bayuelo, A., Matute, R.A. & Caballero, J. Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors. J Mol Model 21, 156 (2015). https://doi.org/10.1007/s00894-015-2690-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-015-2690-5